【先着1,000名様!】1,000円分をプレゼント!

φ10の銅棒に流せる電流と電圧はいくらくらいですか?耐電圧、耐電流になるんですかね?
この時間、たとえば10秒までなら何Aまでいけるみたいなのはどうやって計算してるのですか?

A 回答 (2件)

10秒と短時間の場合は瞬時許容電流の値が参考になると思います。



参考URLの瞬時許容電流の裸硬銅線を参考にしてください。

許容電流は
http://www.kitaniti-td.co.jp/technical/08/02_01/ …
断面積を計算し、裸硬銅より線を参考にしてみてください。

参考URL:http://www.jeea.or.jp/course/contents/04203/
    • good
    • 0
この回答へのお礼

回答ありがとうございます

お礼日時:2013/05/12 20:37

>φ10の銅棒に流せる電流と電圧はいくらくらいですか?



許容電流は、概略で250A位。
許容電圧は、外皮で決まり、銅棒単体には制限はない。

計算方法は、発熱量と放熱性から計算します。

この回答への補足

概略で250A位。はどのようにして出すのですか?発熱量と放熱性からでしょうか、そこのとこを詳しくお願いします。
外皮で決まり、とはどういうことなんでしょうか?

補足日時:2013/05/12 20:36
    • good
    • 0
この回答へのお礼

さっそくの回答ありがとうございます

お礼日時:2013/05/12 20:37

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q銅線の許容電流が分からず困っております。

銅線の許容電流について

コイルに使用する銅線の許容電流値が分からず困っております。

直径0.8mmの銅線に10Aの電流を流すことは可能でしょうか?
銅線の被膜はポリウレタンです。
また電流は長時間連続して流れる事はなく、0.1秒間隔で流れます。

盤屋さんの技術講座
http://www9.plala.or.jp/c-hokuto/page28.html

上のサイトを見る限り、直径0.8mmの電線は断面積0.503mm^2となるので
流せるだろうと思ったのですが、
このサイトでは「碍子引き ビニル電線の許容電流」と書かれており
私が使用するポリウレタン被膜の電線にこの許容電流値を適用して良いものか悩んでいるところです。


どなたか教えては頂けませんか?

ちなみに使用する銅線は
RSコンポーネンツ社の
http://jp.rs-online.com/web/p/hookup-equipment-wire/0357772/
となっております。

Aベストアンサー

結論から言います。
焼損して使い物になりません。

こちらをご覧ください。
http://www.oyaide.com/catalog/products/p-1036.html
銅線自体の抵抗はどのメーカでもほとんど変わりませんので
上記の一覧から、0.8mmは34.3Ω/km(0.0343Ω/m)と
なります。
0.1秒間隔で10A(印加電圧を方形波とすれば平均5A)、
銅線長6mとのことですから相抵抗=6×0.0343=0.2058、
発熱容量はI^2Rから
5^2×0.2058=5.145W
となります。
5Wの発熱量とはどれほどのものかわかりますか?
抵抗で5Wのものを検索してみてください。
ホウロウびきのとてつもなくごっついものが出てくると思います。

銅線抵抗を1ケタ以上下げるべきです。

Q通電による銅材の温度上昇量について

銅材にある時間、電流を流した際の銅板の温度上昇量を計算で求めたいのですが、どうのような計算式で求めたらいいでしょうか。各条件は下記の通りです。

・銅材寸法:板厚0.2mm、幅3mm、長さ12mm
・銅材の体積抵抗率:1.7μΩ・cm
・銅材の抵抗値:0.34mΩ
・電流値:60A
・時間:2sec
・初期温度:20℃

通電時間が2秒と短いため、放熱は無視しても結構です。よろしくお願いします。

Aベストアンサー

あっチョンボ です

ガ━━(;゜Д゜)━━ン!!


A÷(銅の総重量×比熱)


ですね

Q通電による銅材の温度上昇について(2)

以前、銅材にある時間、電流を流した際の銅材の温度上昇を求める式を教えていただきました。
今回、空気中での放熱も考慮したいのですが放熱はどのような計算式で求めたらよいのでしょうか。

各条件と温度上昇量の計算式は下記の通りです。

(1)条件
・銅材寸法:板厚0.2mm、幅3mm、長さ12mm
・銅材の体積抵抗率:1.7μΩ・cm
・銅材の抵抗値:0.34mΩ
・電流値:60A
・時間:10sec
・初期温度:20℃

(2)温度上昇量を求める式
熱量=I×I×R×T・・・Aとする
温度上昇量=A÷(銅の重量×比熱)

宜しくお願いします。

Aベストアンサー

まず,発生熱量は0.34mΩ×(10A)^2×10s=12.2J,放熱を考えない温度上昇は,10s通電で500Kくらいでしたね。

次に放熱を考えます。放熱形態として,
・熱伝導(接触している固体へ),
・熱伝達(周辺の流体(空気)へ),
・熱輻射(赤外線などで周辺へ)
のどの形が効くかを考えます。

仮に,銅リボンが空気中にリード線で吊られていて,空気への熱伝達が主だとします。
熱伝達の場合,自然対流か強制冷却か,層流か乱流かによって条件がいろいろ変ります。仮に自然対流とすると,熱伝達率が5~10W/(m^2・K)のオーダになります。この値に,銅リボンの表面積と,予想温度上昇の半分と通電時間(10s)をかけると,熱伝達で失われる熱量が概算できます。概算すると0.9~1.8Jくらい。

次に,銅リボンの両端が温度一定の金属塊に固定されていて,周辺空気への放熱を無視します。厳密には銅リボン内の温度分布を考えないといけないのですが,簡単のため12mmの中央が250Kになり,直線的な温度勾配ができると仮定します。
銅の熱伝導率は380W/(m・K)ですので,これに断面積0.2×3mm^2と温度勾配(250K/6mm)を掛けると,9.5Wとなります。通電時間10sの間に95Jの熱を運び出せる勘定になります。

最後に輻射熱を調べましょう。周辺が20℃=293K,銅リボンが270℃=543Kになるとします。黒体と仮定して,ステファンボルツマン定数5.67×10^(-8)W/(m^2K^4)とリボンの表面積72mm^2から計算すると0.32Wとなり,10s間に逃げる熱量は3.2Jとなります。

なるほど,#1さんがおっしゃるように,銅リボン内を伝わって両端に逃げる熱が大きいことが分かります。
となると,銅リボンの両端が温度一定に保たれているとして,1次元の熱拡散方程式を非定常状態について解く,
というモデルでよさそうです。

手始めに,十分時間が経った定常解を求めてみましょう。温度分布は中央が高い二次曲線となることが知られており,両端との温度差はQv*x^2/(2λ)で与えられます。ここにx=6mm,熱伝導率λ=380W/(m・K),抵抗率=1.7×10^(-8)Ωm,電流密度=60A/(0.2×3mm^2)=100A/mm^2,発熱密度Qv=抵抗率×(電流密度)^2=1.7×10^8[W/m^3]を代入すると,8.05Kとなります。
すなわち,銅リボンの両端が20℃に保たれていれば,(10sといわず)長時間通電しても中央が28℃になるだけ,との結論になりました。
はて,モデル化が荒すぎるのかなぁ?

まず,発生熱量は0.34mΩ×(10A)^2×10s=12.2J,放熱を考えない温度上昇は,10s通電で500Kくらいでしたね。

次に放熱を考えます。放熱形態として,
・熱伝導(接触している固体へ),
・熱伝達(周辺の流体(空気)へ),
・熱輻射(赤外線などで周辺へ)
のどの形が効くかを考えます。

仮に,銅リボンが空気中にリード線で吊られていて,空気への熱伝達が主だとします。
熱伝達の場合,自然対流か強制冷却か,層流か乱流かによって条件がいろいろ変ります。仮に自然対流とすると,熱伝達率が5~10W/(m^2・K)のオーダになり...続きを読む

QEVTの制限抵抗の一次換算値について

EVTの制限抵抗の一次換算値について
EVT 一次:6600/√3V 三次:190/3V 三次はオープンデルタで制限抵抗25オームです。
この25オームが一次側の対地間に10kオームで各相にかかるような計算になるのですか?
計算方法がよく分かりません。一次換算の計算方法を教えてください。

Aベストアンサー

>10kオーム
おそらく値は合っていますが、

>この25オームが一次側の対地間に10kオームで各相にかかるような
この表現は微妙です。
回路図がないので、伝わるかどうか

まず換算の計算から
単純に1次側に換算するなら
25Ω×1/3×((6600/√3)/(190/3))^2=30166Ω 
となります。 これは約30kΩが1次のコイルと直列に各1次コイルに入る形になります。
参照URLのP2 下のほうEVTの部分の1次側にRの文字だけがコイル記号の近くに3個書いてある部分です。
おそらく、地絡の計算をされるのでしょうから、この1次換算したものが1次側で3個並列になると考えて1/3にして10kΩになります。
10kΩで考える場合は1次コイルの中性点の接地線に10kΩが入っていると考えたほうがよいと思います。

参考に換算式ですが、25Ωが3次コイルが3個直列で負担しているので1/3とします。
次に変圧比の2乗これは換算でよくやるので問題ないと思いますが、変圧比というか巻数比をよく確認する必要があります。

参考URL:http://www.amiyata.net/HV1LG.pdf#search='%E5%88%B6%E9%99%90%E6%8A%B5%E6%8A%97+%E6%8F%9B%E7%AE%97'

>10kオーム
おそらく値は合っていますが、

>この25オームが一次側の対地間に10kオームで各相にかかるような
この表現は微妙です。
回路図がないので、伝わるかどうか

まず換算の計算から
単純に1次側に換算するなら
25Ω×1/3×((6600/√3)/(190/3))^2=30166Ω 
となります。 これは約30kΩが1次のコイルと直列に各1次コイルに入る形になります。
参照URLのP2 下のほうEVTの部分の1次側にRの文字だけがコイル記号の近くに3個書いてある部分です。
おそらく、...続きを読む

Qモーターの定格電流の出し方

三相200v5.5kw定格電流22Aのモーターなんですが全負荷運転で22Aの電流が流れるって事で良いのでしょうか?
ちなみに定格電流が分からないモーターの電流値の出し方は5500/200×√3なのでしょうか?
そうすると定格電流が違ってくるので・・・
勝手な考えなんですが力率を70%って考えればよいのでしょうか?
調べていくうちにだんだん分からなくなってきちゃいました
もし宜しければ教えていただきたいのですが

Aベストアンサー

・全負荷運転で22Aの電流が流れる
で、OKです。

・定格電流が分からないモーターの電流値
5.5kWは軸出力なので、電気入力(有効電力)に換算するために、効率で割る必要があります。
次に、皮相電力に換算するために力率で割る必要があります。
結果、
{出力/(力率*効率)}/(√3*電圧)
ということになります。

モータの力率や効率が不明の場合には、
JISC4203 一般用単相誘導電動機
JISC4210 一般用低圧三相かご形誘導電動機
JISC4212 高効率低圧三相かご形誘導電動機
で規定されている効率や力率を使うことになるかと。
(これらの規格には、各容量について電流が参考値として記載されていますが)

QVA提案とVE提案の違いを教えて下さい。

こんにちわ。
VA提案とVE提案の意味の違いを教えて下さい。
宜しく、お願い致します。

Aベストアンサー

用語的には。
VA:Value Analysisの頭文字(価値分析)
VE:Value Engineeringの頭文字(価値工学)

VAは、おおざっぱに言って、既存の製品に対して改善を行う手法。
製品やその部品に対して、必要とされる機能や品質を考えて現状を分析し、コスト低下につながる代替案を提案する。
この部品は何のために使うのか →他に代替えになる物はないか →あるいは現状の品質がほんとに必要かなど。

VEは、開発設計段階から行う手法。
設計を行う場合に、機能や品質を満足するするに必要なレベルを考慮する。
(適正な材料の選択、適正公差、最適工法の選択、仕上げ方法の見直しなど)
不必要に過剰品質にならない、設計が複雑では製造段階での努力には限界がある、それらを含めて設計段階への提案。

現在では、VEの方が重視されている、もちろん既存製品に対するVA提案を受けて、次製品へのVE活動につなげていきます。

個人サイトですが「VEをもっと知ろう」
http://www.geocities.jp/taka1yokota/mypage4-ve1.htm
(VEの考え方がおおよそ分かると思います)

社団法人日本VE協会「VE基本テキスト」
http://www.sjve.org/102_VE/images/302_basic.pdf
(PDFファイルです)

こんな感じです。

用語的には。
VA:Value Analysisの頭文字(価値分析)
VE:Value Engineeringの頭文字(価値工学)

VAは、おおざっぱに言って、既存の製品に対して改善を行う手法。
製品やその部品に対して、必要とされる機能や品質を考えて現状を分析し、コスト低下につながる代替案を提案する。
この部品は何のために使うのか →他に代替えになる物はないか →あるいは現状の品質がほんとに必要かなど。

VEは、開発設計段階から行う手法。
設計を行う場合に、機能や品質を満足するするに必要なレベルを考慮する。
...続きを読む

Q変圧器の二次側を接地するのはなぜ?

シロートの質問で申し訳ありません(ノ_・。)

変圧器(トランス)の出口側(二次側)はアースをしますよね?
B種接地というんでしょうか。

あれが、なんで必要なんだか良くわかりません。
素人的考え方だと、そんな電気が流れてる部分を地面につないじゃったら、
電気が地面にだだ漏れして危ないんじゃないか!?
とか思っちゃうのですが???

初心者向け電気のしくみ、的な本を読むと、
「接地側を対地電圧(0V)」にして、線間電圧を100Vまたは200Vにする、みたいな事が書いてあるのですが
じゃあ3線あるうちの1本は電圧ゼロだから触っても大丈夫なのか?
いやいや電線は普通交流なんだから、電圧は上がったり下がったりしているんだろう・・・
そしたら対地電圧0Vってなによ???

・・・みたいな感じで、すっかり沼にはまってしまっております。
詳しい方、どうか中学生に教えるような感じでわかりやすく解説してください(´・ω・`)

Aベストアンサー

#1お礼欄に関して、

通常の屋内配線では、
常時電線に対地100または200Vがかかっていることによる危険性
トラブルがおきたときに電線が対地6600Vになる危険性
どちらを避けますか?(どちらの方が対策が楽ですか?)という話になるかと思います。

一部特殊なところでは、一次二次の接触がおきないように十分な配慮をしたうえで、対地100Vによる感電(だけじゃなかったかも)を防止するために二次側を浮かしている、というところもあると聞いたことがあります。(医療関連だったかな。)

三相の電圧
Y接続についてみると、たとえば三相200Vだと、中性点に対して、
Vu=115sin(wt),Vv=115sin(wt-2π/3),Vw=115sin(wt-4π/3)の電圧になってます。
ここで、v相を接地すると、中性点の対地電位が-Vv=-115sin(wt-2π/3)になり、
u相はVu-Vv=200sin(wt+π/6),w相はVw-Vv=200sin(wt+π/2) と(位相と大きさは変わるけど)三相電圧(のうちの二つ)になります。

#1お礼欄に関して、

通常の屋内配線では、
常時電線に対地100または200Vがかかっていることによる危険性
トラブルがおきたときに電線が対地6600Vになる危険性
どちらを避けますか?(どちらの方が対策が楽ですか?)という話になるかと思います。

一部特殊なところでは、一次二次の接触がおきないように十分な配慮をしたうえで、対地100Vによる感電(だけじゃなかったかも)を防止するために二次側を浮かしている、というところもあると聞いたことがあります。(医療関連だったかな。)

三相の電...続きを読む

Qトランスの2次側短絡電流の求め方がわかりません。 ご指導お願い致します

トランスの2次側短絡電流の求め方がわかりません。 ご指導お願い致します。

求めたいのは 

1φ3W100/200 150KVAのトランス。

3φ3W 200 500KVAのトランス。

です。わからなくてかなり困ってます><


また 今 ケーブルラックに 2段積みにケーブルを乗せようとしています。

そこで 低減率が0.5となるのですが ケーブルの許容電流も0.5倍と考えていいのでしょうか?

この場合 低減率を考慮した許容電流(0.5なら半分?)に対応するブレーカーをとりつけるべきなのでし

ょうか?  例えば、ケーブルの許容電流が 80Aだとします。 ケーブルラックで2段重ね

にする為 低減率が0.5とします。 実際のケーブルの許容電流は 40A。

これを保護するブレーカーは 40A未満のものとかんがえるのでしょうか?

ご指導願います。

Aベストアンサー

>トランスの2次側短絡電流の求め方がわかりません。
高圧側・トランスのパーセントインピーダンスが分からないと計算できません。
トランスが納入済であれば名板に書いてあります。納入前ならメーカーに一般値を聞いてください。実際作ってみないと分かりませんが
高圧側のパーセントインピーダンスは、高圧受電であれば電力会社の計算値があります。特高受電であれば、新設時に計算しているはずなので、見つけてください。
概算で計算するには、基本的に高圧短絡電流は12,5kAを超えないように設計するのでで7%(10MBASE)です。まれに20kAもありますが
変圧器150kVAは2%、500kVAは3%程度で計算すれば超えることがないと思います。
まず7%を150kVAにベース変換7X150/10000=0.105%
変圧器2次パーセントインピーダンス2+0.105=2.105%
変圧器の定格電流をパーセントインピーダンス(実数)で割る
150/0.2/0.02105=36kA
3相は頑張ってください。
>ケーブルラックに 2段積みにケーブルを乗せようとしています。
あまり推奨できません、回避したほうがよいと思います。
電灯回路であれば電線の許容電流以下でなければならないので、40A以下のCBとなります。
動力回路は始動電流絡みで緩和規定がありますが、基本的に40Aとなってしまうと思います。
低減率はすべての電線に電流が流れた場合です。(参考までに)

>トランスの2次側短絡電流の求め方がわかりません。
高圧側・トランスのパーセントインピーダンスが分からないと計算できません。
トランスが納入済であれば名板に書いてあります。納入前ならメーカーに一般値を聞いてください。実際作ってみないと分かりませんが
高圧側のパーセントインピーダンスは、高圧受電であれば電力会社の計算値があります。特高受電であれば、新設時に計算しているはずなので、見つけてください。
概算で計算するには、基本的に高圧短絡電流は12,5kAを超えないように設計するので...続きを読む

Q負荷電流の簡易計算

負荷容量より定格電流を求める簡易計算ですが、
例えば
3相200V5.5kwの場合は5.5×4=22A
3相200V5.5KVAの場合は5.5×3=16.5A
となりますよね。
Kwの場合は4倍は内線規定3705-6で唄われていますが、
KVAの場合の3倍はどこで唄われていますか?
唄われていない場合は3倍の根拠を教えてください。
宜しくお願い致します。

Aベストアンサー

1000/(200√3) =2.89なので、これを丸めて使っているかと思います。

Q励磁突入電流を抑制する為の方法

変圧器の起動時に励磁突入電流が発生する事は存じておりますが、その励磁突入電流を抑制する方法にはどのような方法があるのでしょうか?リアクトル初期充電法なる手法があることはインターネットで拝見しましたが、具体的な内容はわからず仕舞いでした。

また、励磁突入電流は、実際には定格電流の何倍程度になるものなのでしょうか?5~10倍程度であるとインターネットでは拝見しました。概ねその程度になるのでしょうか?

詳細なご回答を頂ければ幸いです。
宜しくお願い致します。

Aベストアンサー

No.4です

位相制御なんていうと何か難しそうですが、新幹線の発車時を体験するとよく分かると思います。
最新の新幹線はいつ発車したか分からないほどとてもスムーズに発進してアッという間に300Kmまで加速してしまいます。これが精密な位相制御された結果なのです。

変圧器やモーターなど誘導器は最初の突入電流を押さえればいいだけなので細かい制御は不要です。

突入電流は鉄心(コア)の最大磁束密度と巻き線のインダクタンス(巻き数)で決まってしまいます。
大電力の変圧器だと巻き線は太い銅線を使うので直流抵抗はほとんど"0”Ωでしょう。(テスターで計れない)
ここで鉄心の最大磁束密度とインダクタンスの駆け引きになります。

鉄心の最大磁束密度が勝てばコイルのインダクタンスが負け、(突入電流が大きくならない)鉄心の最大磁束密度が負ければ変圧器はショートと同じなので莫大な突入電流が流れてブレーカーが落ちるかヒューズが飛びます。

  ***最大磁束密度を超えた変圧器の巻き線は銅線の直流抵抗と同じ***

です。

これを天秤にかけて変圧器は設計されているのです。


細かいことをいうととっても長くなってしまいますが、単純には変圧器の大きさや重量と発熱を考慮して変圧器は造られているということです。
もっと簡単にいうと「お金」ですね。


電子回路制御なんて量産すれば値段などすぐ下がるのでたいしたことないですが壊れると解析修理はとてもむずかしい............
大電力を扱うところはやっぱり物理量がモノ言わせるところだと感じますね。

(自分は電子屋ですが、仕事で電力会社の方と話します。電力の方は6,600V-5,000Aや15,600V-○Aですが、電子屋は.0・・・V-____μA nA pAの世界なのでなかなかピンときません。電流だけで10-15乗 1,000,000,000,000,000アンペアですね)

6,600V切り替えしてた現場の方に聞いたらお昼の時間で三相送電線は0.12~0.16Aだそうです。夜はわかりません。




失礼します

No.4です

位相制御なんていうと何か難しそうですが、新幹線の発車時を体験するとよく分かると思います。
最新の新幹線はいつ発車したか分からないほどとてもスムーズに発進してアッという間に300Kmまで加速してしまいます。これが精密な位相制御された結果なのです。

変圧器やモーターなど誘導器は最初の突入電流を押さえればいいだけなので細かい制御は不要です。

突入電流は鉄心(コア)の最大磁束密度と巻き線のインダクタンス(巻き数)で決まってしまいます。
大電力の変圧器だと巻き線は太い銅...続きを読む


人気Q&Aランキング