今まで数学の問題を解く上で、答えはわからないものの、その問題の意味がわからなかった問題に出会ったことはありませんでした。しかし今日であってしあいました。正直言ってショック!そんなことはさておいて、問題の問題を・・・(しゃれ)


問い
  n個の自然数1,2,3, ・・・・・・,nを一列に並べて得られる順列について、次の問い  に答えよ。但しn>=4(nは4以上)とする。

(1) 数字n-1より右側には、n-1より小さい数字は並ばないものは、いくつある   か。

30分くらい考えましたが(解答じゃなく問題の意味)分かりませんでした。
つまり何を求めればいいのですか。そりゃ何かを何個あるかをもとめるのは分かりますが、「何か」つまり「数字n-1より右側には、n-1より小さい数字は並ばないもの」が何なのか分かりません。
教えてください。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (15件中11~15件)

ごめんなさい。

一部文章になってませんでした。
「xxx45という列は全部に沿っていますね。」を
削除するか、
「すなわち、xxx45という列は題意に沿っています。」
と置き換えて読んでください。
    • good
    • 0

No.2でアドバイスしたgoo_no_sukeです。


文章中、「1,2,3,4,5を並べて得られる順列は~」と書いたのは、
「1,2,3を並べて得られる順列は~」の間違いです。失礼しました。

こんな分かりにくい「アドバイス」もパスしちゃってください(笑)。
    • good
    • 0

例えば12345という列はn-1=4の右側にあるのは5のみで4より小さい数字は無いので題意に沿う列です。


xxx45という列は全部に沿っていますね。あとはxxxx4というのも、右側には
もう数字が無いのでこれも題意に沿っています。
このような列がいくつあるかという問題ではないですか?
    • good
    • 0
この回答へのお礼

皆さんへ、
なるほどそういうことか。そういう解釈なら、問題文は
「数字n-1より右側には、n-1より小さい数字は並ばないものは、いくつあるか。」

ではなく
「数字n-1より右側において、n-1より小さい数字が並ばないものは、いくつあるか。」
というほうがあってますよね。
僕は前半の「右側には」→「右側において」の変更はともかく、後半の「数字は」は「数字が」に変えたほうがいいと思います。そもそも文法的問題において、どちらが正しいのでしょうねぇ。どちらも正しいのでしょうか。「30分考えた」といいましたが、本当は1時間考えました。そのことを考えると、なんか腹が立ってきます。
それはともかく、解答ありがとうございました。

お礼日時:2001/07/16 15:53

n 個の数字の順番をばらばらに並べた場合の設問かと


思われます。
    • good
    • 0

数学が得意ではない私のアドバイスですので不確かですが・・・


(回答ではありません)

この問題は自然数の順列なので、n-1より右側にはn-1より必ず大きい数字
が並びますよね~

バチッ バチッ ・・・ バチッ 思考回路が限界です

ん~意味不明

結論:出版社の印刷ミスじゃないですか?
でも、私も学生時代はよく「その分野の独特な言葉遣い」につまづいた
ことがありました。教科書に、そのような表現がないか探してみてはどうですか?

この回答への補足

そうですよね。分かりませんよね。
実はこの問題、平成12年8月20日に
行われた河合塾の東北大学入試オープン問題(東北オープン模試)
なんですよ。こんなこと書いてもいいのかな・・・?
河合塾だから印刷ミスってことはあまり考えられないと
思うのでが・・・
誰か他に分かった人、よろしくお願いします。

補足日時:2001/07/16 15:34
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセル使用後にクローズする時の問題点

windows7、オフィス2010のエクセルを使用中。但し一部エクセル表は古いオフィス2003のエクセル表
を継続してオフィス2010で使って居ます。
そのためかどうかは解りませんがエクセルで作業後変更部の保存をしてエクセルをクローズするとき、使用したエクセル表はクローズ出来ますが、エクセルの列、行が表示されないエクセルが表示されて、それも右上のxを使ってクローズする必要が度々発生します。
この変なエクセルが表示されないようにするにはどうすればよろしいでしょうか?

この現象とウイルスソフトのウイルスバスタクラウドとの関連性はあるでしょうか?
オフィス2003形式で作ったエクセル表をオフィス2010で引き続き使うのは問題があるのでしょうか?
どなたかご教示下さい。

Aベストアンサー

>今後はそのたびにShift+×マークを実施するのか

閉じるたびの動作です。
後、定番のショートカットでAlt+F4というのがあります。マウスにこだわらないのならこちらでも。

2007からインターフェイスなどが変わって戸惑う事が多いと思いますがそのうち慣れますよ。

Q10^nの正の約数を小さい順に並べ、a1 a2,,,,,,,af(n)

10^nの正の約数を小さい順に並べ、a1 a2,,,,,,,af(n)とします。これらの約数の10を底数とする対数をとり、さらにそれらの和を計算したとき、2010を超えるのは、nがいくつのときでしょうか

Aベストアンサー

10^n=2^n*5^n
なので、10^nの約数は、
2^i*5^j (i=0,1,2,・・・,n、j=0,1,2,・・・,n)

それら約数の対数の和Sは、
S=Σ[i=0~n]Σ[j=0~n]log(2^i*5^j)
=Σ[i=0~n]Σ[j=0~n]{i*log2+j*log5)}
=(Σ[i=0~n]Σ[j=0~n]i*log2)+(Σ[i=0~n]Σ[j=0~n]j*log5)
=(n(n+1)^2*log2/2)+(n(n+1)^2*log5/2)
=n(n+1)^2(log2+log5)/2
=n(n+1)^2/2

n=15のとき、S=1920
n=16のとき、S=2312
より、求めるnは
n=16

Q今回の普天間、辺野古問題は、鳩山内閣の迷走ぶりばかりがクローズアップさ

今回の普天間、辺野古問題は、鳩山内閣の迷走ぶりばかりがクローズアップされていますが、これを機会に日本の防衛問題を改めて考え直してみるという方向にはなら無いのでしょうか?

そちらの方が重要問題だと思います。

日本全体が、日本の防衛問題の方針をを分からずままに、あるいは分かろうとしないままに、騒いでるだけのようで、無責任もはなはだしい気がしますが。

Aベストアンサー

鳩山首相は素晴らしいと思います。「美味しんぼ」の作者雁屋哲氏のブログを読むと、愚民の日本人が魔女狩り言論で無責任に鳩山首相を叩いていると思うようになります。

鳩山由紀夫氏を攻撃するのは誰か
http://kariyatetsu.com/nikki/1228.php

敵を間違えるな
http://kariyatetsu.com/nikki/1240.php

Qα_1,α_2,…,α_n が非零の時,e^(α_1t),e^(α_2t),…,e^(α_nt)が一次独立を示す問題です

Let α_1,α_2,…,α_n be distinct numbers, ≠0. Show that the functions
e^(α_1t),e^(α_2t),…,e^(α_nt) are lineraly independent over the complex numbers.
[Hint: Suppose we have a linear relation
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
with constants c_i,valid for all t. If not all c_i are 0,without loss of generality,we may assume that none of them is 0.Differentiate the above relation n-1 times. You get a system of linear equations. The determinant of its coefficients must be zero.(Why?) Get a contradiction from this.]

と言うe^(α_1t),e^(α_2t),…,e^(α_nt)が一次独立を示す問題です。
(もし,c_iの一つでも非零なら全c_iも非零である事を使ってよいようです)
n-1回微分して得られる一次連立方程式の係数行列の行列式は

とりあえずn-1回微分してみましたらその係数行列の行列式が0でなければならない事から
矛盾を引き出せと述べてあります。

係数行列Aは
A:=
(c_1,c_2,…,c_n)
(c_1α_1,c_2α_2,…,c_2α_n)
(c_1α_1^2,c_2α_2^2,…,c_nα_n^2)
:
(c_1α_1^(n-1),c_2α_2^(n-1),…,c_nα_n^(n-1))

と書けると思います。

そして,その一次連立方程式は
At^(e^α_1t,e^α_2t,…,e^α_nt)=0
と書けます。
(但しtは転置行列を表す)

このdet(A)=0でなければならないのは何故なのでしょうか?

そしてdet(A)=0ならどうして矛盾なのでしょうか?

Let α_1,α_2,…,α_n be distinct numbers, ≠0. Show that the functions
e^(α_1t),e^(α_2t),…,e^(α_nt) are lineraly independent over the complex numbers.
[Hint: Suppose we have a linear relation
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
with constants c_i,valid for all t. If not all c_i are 0,without loss of generality,we may assume that none of them is 0.Differentiate the above relation n-1 times. You get a system of linear equations. The determinant of its coefficients must ...続きを読む

Aベストアンサー

この「ヒント」が・・・あんまりよくない気がする

・微分を繰り返して,方程式を作る
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
c_1α_1e^(α_1t)+c_2α_2e^(α_2t)+…+c_nα_ne^(α_nt)=0
・・・
c_1α_1^{n-1}e^(α_1t)+c_2α_2^{n-1}e^(α_2t)+…+c_nα_n^{n-1}e^(α_nt)=0
・t=0を代入する
c_1+c_2+…+c_n=0
c_1α_1+c_2α_2+…+c_nα_n=0
・・・
c_1α_1^{n-1}+c_2α_2^{n-1}+…+c_nα_n^{n-1}=0
これをcjについての連立方程式だとして整理すると,
係数の行列の行列式は
「ファンデルモンドの行列式」ってやつで
すぐ計算できる.
そうすると「αi」が全部違うから0ではない
つまり,係数が全部0になり一次独立.

ヒントの通りにするなら
without loss of generality,we may assume that none of them is 0.
の意味を理解して,やっぱりファンデルモンドで矛盾

この「ヒント」が・・・あんまりよくない気がする

・微分を繰り返して,方程式を作る
c_1e^(α_1t)+c_2e^(α_2t)+…+c_ne^(α_nt)=0
c_1α_1e^(α_1t)+c_2α_2e^(α_2t)+…+c_nα_ne^(α_nt)=0
・・・
c_1α_1^{n-1}e^(α_1t)+c_2α_2^{n-1}e^(α_2t)+…+c_nα_n^{n-1}e^(α_nt)=0
・t=0を代入する
c_1+c_2+…+c_n=0
c_1α_1+c_2α_2+…+c_nα_n=0
・・・
c_1α_1^{n-1}+c_2α_2^{n-1}+…+c_nα_n^{n-1}=0
これをcjについての連立方程式だとして整理すると,
係数の行列の行列式は
「ファンデルモンドの行列式」ってやつで
す...続きを読む

Qクローズアップレンズ

トイカメラのSharanを持っています。このカメラの焦点距離は1.2m~
∞です。マクロ撮影をしたいのですが、勿論、Sharan向けのクローズ
アップレンズはありません。それで、サイズの問題がありますが、
他のクローズアップレンズを使って撮影する方法は無いでしょうか。
お教え下さい。

Aベストアンサー

シャランの撮影範囲からすると,多分ピントの中心は2.4mあたりに来ているかと思います.(1.2m-∞は撮影距離で,レンズの焦点距離ではないです.ちょっと気になったので)
クローズアップレンズ自体の焦点距離(33-20cm)と比べると,この撮影距離(2.4m)は充分長く,クローズアップレンズを使ったときの撮影距離にはほとんど影響しないかと思います.
結果,撮影距離はクローズアップレンズの焦点距離程度になるかと.

Qa_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,

a_1=1, a_(n+1)=√(1+a_n) (n=1,2,3,,,)のときの lim(n→∞)a_n をもとめよ。
途中し式も詳しく教えてください

Aベストアンサー

a_1=1
a_n≧1とすると
(a_{n+1})^2=a_n+1≧2
a_{n+1}≧√2>1

x^2=1+x
x=(1+√5)/2>1
a_{n+1}+x>2
(a_{n+1})^2-x^2=a_n-x
(a_{n+1}-x)(a_{n+1}+x)=a_n-x
|a_{n+1}-x|=|a_n-x|/(a_{n+1}+x)<|a_n-x|/2

|a_2-x|<|a_1-x|/2=(√5-1)/2

|a_{k+1}-x|<(√5-1)/(2^k)とすると
|a_{k+2}-x|<|a_{k+1}-x|/2<(√5-1)/(2^{k+1})

|a_{n+1}-x|<|a_1-x|/(2^n)

ε>0に対して (√5-1)/ε<n0 となる n0があり
n>n0 ならば |a_{n+1}-(1+√5)/2|<(√5-1)/(2^n)<(√5-1)/n0<ε
lim_{n→∞}a_n=(1+√5)/2

QDBに接続する時のオープンとクローズについて

VB.NET+ACCESSでWEBアプリケーションを作っております。
開発は特に問題がないのですが、少し疑問に思ったことがありますので、どなたかご存知の方がおられましたら教えてください。

DBに接続するとき、接続をオープンします。
この後で接続をクローズせずにアプリケーションを閉じるとどのような影響があるのでしょうか?
書籍などには必ずクローズをするようにと書かれていますが、その理由がよくわかりません。
どなたかご教授ください。

Aベストアンサー

Java,OracleでWEB開発をしています。

>接続をクローズせずにアプリケーションを閉じるとどのような影響があるのでしょうか?

徐々にパフォーマンスが落ちてきたり、ある時DB接続できなくなったりします(実体験)DB接続のオープン、クローズだけでなく Java の場合は ResultSet, PreparedStatement のクローズも行わないと問題が発生します。

あと#1さんの
>WEB系では、そのページでのDBへのコネクションは、ページが読み込み終了した時点でオブジェクトが解放されますので、自動的にクローズされていると思います。

Javaだとオブジェクト自体がガベージコレクションの対象になるだけで接続は保持されています。明示的にクローズしてやらないと最初に言ったような問題が発生します。

VB.NET+ACCESS の場合は実はボクはどうだか分かりません。(^^;
御参考までに。

Q数学の数列の問題について質問です。 問題 :a1=3,a n+1=2a n/3 + 5・2^n+1(

数学の数列の問題について質問です。

問題
:a1=3,a n+1=2a n/3 +
5・2^n+1(n=1,2,3・・・)
により定められる数列{a n}について考える。

(1)a2=22

(2)b n=a n/2^nとおくと、b n+1=b n/3 +5がア成り立つ。そこで、b n+1-α=1/3 (b n-α)
となる定数αを求めると,α=15/2となる。よって,数列{bn}の一般項はbn=(オ)となる。

解答
:(オ)
b n+1 - (15/2)=1/3(b1-15/2)

⇔bn-15/2=(1/3)^n-1(b1-15/2)

ここで質問です。
どうして
b n+1 - (15/2)=1/3(bn-15/2)
から
bn-15/2=(1/3)^n-1(b1-15/2)
になるのでしょうか?
どこに着目すれば良いでしょうか?
解説よろしくお願いします。

一応問題画像添付します。

Aベストアンサー

>:(オ)
>b n+1 - (15/2)=1/3(b1-15/2)

>⇔bn-15/2=(1/3)^n-1(b1-15/2)

2行目、b_{n+1}-(15/2)=(1/3)(b_n-(15/2))
の間違いでは?これと4行目が同値であるのは,
明らかだと思います.

Qwinクローズ時に異常発生しクローズ出来ない

win7、64ビット、マイクロソフトexplorer 12,
極最近ですがPCをクローズするべく通常の手順でクローズしようとしても、注意書きが表示されてしまいます。
(待機中) explorer.exe
 ログオフ時の音を再生しています。と表示されます。いくら待っても変化せず
強制終了を選ぶと→クローズするような表示に変化しますが「ログオフ」という表示で小さい丸印が
ぐるぐると回りますがエンドレスの如くに続きますので、PC電源を強制終了する事でやっと終了します。電源offによる強制シャットダウンは良くないのは理解していますが他の方法がわかりません。

問題解決の方法をどなたかご教示戴けませんか?

どうしてこうなったのかも見当が付きません。

 

Aベストアンサー

> 何故か急にPCの不具合が直り、元に戻りました。
>  情けないですが何が原因で直ったのか解って居ませんが
>  当分様子を見たいと思います。

下記とよく似た現象です。
自然復旧ということでしょうか。

シャットだうん時のメッセージ
http://oshiete.goo.ne.jp/qa/6745665.html

たまたまクローズ処理がうまくいったのだと思われます。
この例も、Windows 7 の現象ですね。
何かこれと共通点はないのでしょうか?

何か分かったら、後学のため補足願うと有難いです。

QΣ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる

こんにちは。

[問]{φ_n(x)}を[a,b]での直交関数列とせよ。級数Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる事を示せ。
[証]
仮定より[a,b]でΣ[n=1..∞]a_nφ_n(x)=f(x) …(1)と言える。
c_k (k=0,1,2,…)をf(x)の{φ_n(x)}に於ける[a,b]でのフーリエ係数とすると
フーリエ係数の定義から
c_k=∫[a..b]f(x)φ_k(x)dx/∫[a..b](φ_k(x))^2dx=∫[a...b](Σ[n=1..∞]a_nφ_n)φ_k(x)dx/∫[a..b](φ_k(x))^2dx (∵(1))
=∫[a...b]a_kφ_kφ_k(x)dx/∫[a..b](φ_k(x))^2dx(∵{φ_n(x)}は直交)
=a_k∫[a...b](φ_k(x))^2dx/∫[a..b](φ_k(x))^2dx
=a_k
となり,一様収束である事の条件を使わなかったのですがこれで正しいのでしょうか?

こんにちは。

[問]{φ_n(x)}を[a,b]での直交関数列とせよ。級数Σ[n=1..∞]a_nφ_n(x)が関数f(x)に[a,b]で一様収束する時,各n∈Nに対してa_nはfのフーリエ係数となる事を示せ。
[証]
仮定より[a,b]でΣ[n=1..∞]a_nφ_n(x)=f(x) …(1)と言える。
c_k (k=0,1,2,…)をf(x)の{φ_n(x)}に於ける[a,b]でのフーリエ係数とすると
フーリエ係数の定義から
c_k=∫[a..b]f(x)φ_k(x)dx/∫[a..b](φ_k(x))^2dx=∫[a...b](Σ[n=1..∞]a_nφ_n)φ_k(x)dx/∫[a..b](φ_k(x))^2dx (∵(1))
=∫[a...b]a_kφ_kφ_k(x)dx/∫[a..b](φ_k(x))^2dx(∵{φ_n(x)...続きを読む

Aベストアンサー

そのままでは直交性
∫[a...b]φ_n(x)φ_k(x)dx=0 (n≠k)
を利用できないので、Σと∫を入れ換えないといけないのです。


人気Q&Aランキング

おすすめ情報