
はさみうちの原理を使って lim[n→∞](1+1/√n)^n を求めたいです。
試しにn = 1^2, 2^2, 3^2… と入れてみたところ、単調増加で+∞かな?と予想しこのようにしましたが(画質悪くてすみません)、左端がどうも埋められません。
左に、n→∞で∞に発散するものが持ってこれたら右端のはナシで求まると思うんですが、、、
lim[n→∞](1+1/n)^nがネイピア数eに収束することを利用するのが条件です。どなたか教えて頂けませんか。

No.2ベストアンサー
- 回答日時:
(1+1/√n)^n={(1+1/√n)^√n}^√n
と変形できます。
n→∞とすると{}の中がeに収束します。
それがさらに√n乗されてe^√nが∞に発散します。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数列の極限について
-
∞/0って不定形ですか?∞ですか...
-
数3の極限です。 0/1の極限は∞...
-
limの問題
-
数学の問題です
-
シグマの問題なのですが。
-
ニュートン法で解が収束しない
-
極限の問題
-
ラプラス変換後のsの意味って何...
-
単調増加
-
高校数学の初歩的な質問ですが(...
-
無限大の0乗は、1で正しいですか?
-
”有界閉区間”という言葉
-
定数aのn乗根の極限(n→∞)...
-
極限値lim[n→∞](3^n/(2^n+n^2))...
-
lim(An+Bn)=limAn+limBn の証明
-
1/n^2と1/n^3の無限和の問題を...
-
次の条件を満たす数列{an}の...
-
Σ_[n=1,∞]1/nは発散?
-
収束か発散かを示したいです。
おすすめ情報