https://imgur.com/a/T5plJ54
楕円については、方程式より焦点が(s, 0) と(-s, 0)
になるのは形からわかる。また内側にあるのも少し考えればわかる。
x = 0 を考えて焦点からの距離の和というのが2aというのがわかり
y = 0をかんがえて初等的に焦点の座標がもとまる
でも双曲線については、
焦点の座標を先に仮定するか
焦点のからの距離の差を先に仮定するかのどちらかをしないと
ここから問題のことを示すのは実はできません。
(焦点の座標との距離を計算して一定になるのをしめすのじゃだめなことに注意)
?
No.13
- 回答日時:
楕円について
(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかるのか
具体的に証明しない限り
わかったとはいえないのです
なぜ
いびつや原点から非対称な形にならない、
横長の楕円になるか
を
具体的に証明しない限り
証明したことにはならないのです
なるほど。いいたいことがわかりました。
方程式を見てすこし考えればわかるけど、定量的にはいうのは難しいか。
でも、たとえばx^2+y^2=1とみて
まるいくて、原点周りに対象であるといえないといってますか?
No.12
- 回答日時:
x^2/a^2+y^2/b^2=1
c^2=a^2-b^2
b^2=a^2-c^2
x^2b^2+y^2a^2=a^2b^2
x^2(a^2-c^2)+y^2a^2=a^2(a^2-c^2)
a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2
a^2x^2+a^2y^2+a^2c^2=a^4+c^2x^2
a^2(x^2+y^2+c^2)=(cx+a^2)^2-2cxa^2
a^2(x^2+y^2+c^2+2cx)a^2=(cx+a^2)^2
a^2{(x+c)^2+y^2}=(cx+a^2)^2
a√{(x+c)^2+y^2}=cx+a^2
4a√{(x+c)^2+y^2}=4cx+4a^2
0=4a^2-4a√{(x+c)^2+y^2}+4cx
(x+c)^2+y^2=(2a-√{(x+c)^2+y^2})^2+4cx
x^2-2cx+c^2+y^2=(2a-√{(x+c)^2+y^2})^2
√{(x-c)^2+y^2}=2a-√{(x+c)^2+y^2}
√{(x-c)^2+y^2}+√{(x+c)^2+y^2}=2a
だから
楕円
x^2/a^2+y^2/b^2=1
の焦点の座標が
(±√(a^2-b^2),0)
となるのです
焦点の座標を先に(s,0)と(-s,0)と仮定してはいけません
してません。
楕円については(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかります。
いびつや原点から非対称な形にならない、横長の楕円になるから。
ぎゃくに、何がわからないの??
https://imgur.com/a/a1djMI8
No.11
- 回答日時:
a > bだから=1になるためにxのほうがおおきくなきゃいけない
からといって
楕円の焦点が
長軸上にある
と
はわかりません
No.8
- 回答日時:
そこいらじゅうで解説されていますが、見る気ないみたいなので・・・
x^2/a^2 - y^2/b^2 = 1
で c^2 = a^2 + b^2(c > 0、当然 c > a) と置いておきます。
これでもちろん一般性が崩れることはありません。
これは
(c^2-a^2)x^2 - a^2・y^2=a^2(c^2-a^2)
→ c^2・x^2 + 2ca^2・x + a^4 = a^2・x^2 + 2ca^2・x + a^2・c^2 + a^2・y^2
→ (cx + a^2)^2 = a^2{(x+c)^2 + y^2}
と変形できます。
両辺の平方根を取ると
(cx + a^2) = ±a√((x+c)^2 + y^2)
→ (x-c)^2 + y^2 = (x+c)^2 + y^2 + 4a^2 ±4a√((x+c)^2 + y^2})
→ (x-c)^2 + y^2 = (√((x+c)^2 + y^2) ±2a)^2
双曲線の定義式にたどり着きました。多少技巧的ですが完全に演繹的です。
#c は焦点位置
たしかに、そうだか。
でも、その無機の説明は証明になってますか?
演繹的といっているけど、問題文に書いてあるからそう書いたのは数学として大人げないと思います
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
自分独自の健康法はある?
こうしていると調子がいい!みたいな自分独自の健康法、こだわりはありますか?
-
【選手権お題その3】この画像で一言【大喜利】
とあるワンシーンを切り取った画像。この画像で一言、お願いします!
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
1+2+3+…=?
数学
-
数学の問題ですが、わかりません
数学
-
a, bがa>0, b>0,1/a+2/b=3を満たして変化するとき, (1) abの最小値を求めよ
数学
-
-
4
tの値が解答と合いません。どこが間違ってるか指摘お願いします
数学
-
5
なんでこんなことがわからない?
数学
-
6
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
7
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
8
複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3
数学
-
9
1/3で場合分けは?
数学
-
10
難しいのでゆっくりよんでください。
数学
-
11
iに絶対値がつくとどうなるのかを教えてください
数学
-
12
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
13
画像の説明で式中の*は掛け算、'は微分を表しているのでしょうか? あと他にもアンダーバー、_とかも出
数学
-
14
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
15
かんたんで不安
数学
-
16
数学II 2つの整式f(x), g(x)の和と積をx-aでわったときの余りが、それぞれb,cであると
数学
-
17
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
18
ちょっとむずかしいね?
数学
-
19
なぜ点Oを通ると分かるのですか? ※後ほど補足で問題の画像貼ります。
数学
-
20
lim x→0 tanxについて
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
重分積分の極座標変換について
-
「原点に返る」と「原点に戻る...
-
「0でない2つのVのベクトルu,v...
-
右下の小さい数字について
-
楕円と回転行列について
-
距離、方位角から座標を求める方法
-
空間上の測定された点群から最...
-
等角螺旋(らせん)の3次元的...
-
距離と方向角から座標を求める...
-
複素数平面と座標平面の対応に...
-
数学の二次関数
-
正四面体ABCDの頂点からおろし...
-
なぜベクトルの外積の向きが右...
-
回転した座標の計算方法について
-
4点を通る球の式を求めたい。
-
複数の点(x,y)を通る曲線を,指...
-
【至急】数学の問題です。よろ...
-
四角形を斜めから見ると
-
三角関数 範囲が-πからπのとき...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
右下の小さい数字について
-
重分積分の極座標変換について
-
「原点に返る」と「原点に戻る...
-
距離と方向角から座標を求める...
-
空間上の測定された点群から最...
-
測量座標と算数座標の違い
-
楕円の角度とは?
-
等角螺旋(らせん)の3次元的...
-
複素数平面と座標平面の対応に...
-
なぜベクトルの外積の向きが右...
-
三角関数 範囲が-πからπのとき...
-
エクセルでグラフの作り方 軌...
-
「0でない2つのVのベクトルu,v...
-
N点間の中心と重心の求め方
-
複素数平面についてです ①xy平...
-
外積が右ねじの向きであること...
-
距離、方位角から座標を求める方法
-
2点からその延長線上にある点の...
-
座標のS/I方向について
おすすめ情報