https://imgur.com/a/T5plJ54
楕円については、方程式より焦点が(s, 0) と(-s, 0)
になるのは形からわかる。また内側にあるのも少し考えればわかる。
x = 0 を考えて焦点からの距離の和というのが2aというのがわかり
y = 0をかんがえて初等的に焦点の座標がもとまる
でも双曲線については、
焦点の座標を先に仮定するか
焦点のからの距離の差を先に仮定するかのどちらかをしないと
ここから問題のことを示すのは実はできません。
(焦点の座標との距離を計算して一定になるのをしめすのじゃだめなことに注意)
?
No.13
- 回答日時:
楕円について
(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかるのか
具体的に証明しない限り
わかったとはいえないのです
なぜ
いびつや原点から非対称な形にならない、
横長の楕円になるか
を
具体的に証明しない限り
証明したことにはならないのです
なるほど。いいたいことがわかりました。
方程式を見てすこし考えればわかるけど、定量的にはいうのは難しいか。
でも、たとえばx^2+y^2=1とみて
まるいくて、原点周りに対象であるといえないといってますか?
No.12
- 回答日時:
x^2/a^2+y^2/b^2=1
c^2=a^2-b^2
b^2=a^2-c^2
x^2b^2+y^2a^2=a^2b^2
x^2(a^2-c^2)+y^2a^2=a^2(a^2-c^2)
a^2x^2-c^2x^2+a^2y^2=a^4-a^2c^2
a^2x^2+a^2y^2+a^2c^2=a^4+c^2x^2
a^2(x^2+y^2+c^2)=(cx+a^2)^2-2cxa^2
a^2(x^2+y^2+c^2+2cx)a^2=(cx+a^2)^2
a^2{(x+c)^2+y^2}=(cx+a^2)^2
a√{(x+c)^2+y^2}=cx+a^2
4a√{(x+c)^2+y^2}=4cx+4a^2
0=4a^2-4a√{(x+c)^2+y^2}+4cx
(x+c)^2+y^2=(2a-√{(x+c)^2+y^2})^2+4cx
x^2-2cx+c^2+y^2=(2a-√{(x+c)^2+y^2})^2
√{(x-c)^2+y^2}=2a-√{(x+c)^2+y^2}
√{(x-c)^2+y^2}+√{(x+c)^2+y^2}=2a
だから
楕円
x^2/a^2+y^2/b^2=1
の焦点の座標が
(±√(a^2-b^2),0)
となるのです
焦点の座標を先に(s,0)と(-s,0)と仮定してはいけません
してません。
楕円については(+-s, 0 )の形になることが
方程式と焦点からの距離の和がひとしいだけわかります。
いびつや原点から非対称な形にならない、横長の楕円になるから。
ぎゃくに、何がわからないの??
https://imgur.com/a/a1djMI8
No.11
- 回答日時:
a > bだから=1になるためにxのほうがおおきくなきゃいけない
からといって
楕円の焦点が
長軸上にある
と
はわかりません
No.8
- 回答日時:
そこいらじゅうで解説されていますが、見る気ないみたいなので・・・
x^2/a^2 - y^2/b^2 = 1
で c^2 = a^2 + b^2(c > 0、当然 c > a) と置いておきます。
これでもちろん一般性が崩れることはありません。
これは
(c^2-a^2)x^2 - a^2・y^2=a^2(c^2-a^2)
→ c^2・x^2 + 2ca^2・x + a^4 = a^2・x^2 + 2ca^2・x + a^2・c^2 + a^2・y^2
→ (cx + a^2)^2 = a^2{(x+c)^2 + y^2}
と変形できます。
両辺の平方根を取ると
(cx + a^2) = ±a√((x+c)^2 + y^2)
→ (x-c)^2 + y^2 = (x+c)^2 + y^2 + 4a^2 ±4a√((x+c)^2 + y^2})
→ (x-c)^2 + y^2 = (√((x+c)^2 + y^2) ±2a)^2
双曲線の定義式にたどり着きました。多少技巧的ですが完全に演繹的です。
#c は焦点位置
たしかに、そうだか。
でも、その無機の説明は証明になってますか?
演繹的といっているけど、問題文に書いてあるからそう書いたのは数学として大人げないと思います
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
【お題】・忍者がやってるYouTubeが炎上してしまった理由
-
あなたの「プチ贅沢」はなんですか?
お仕事や勉強などを頑張った自分へのご褒美としてやっている「プチ贅沢」があったら教えてください。
-
AIツールの活用方法を教えて
みなさんは普段どのような場面でAIツール(ChatGPTなど)を活用していますか?
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
1+2+3+…=?
数学
-
数学の問題ですが、わかりません
数学
-
tの値が解答と合いません。どこが間違ってるか指摘お願いします
数学
-
-
4
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
5
こちらの2024/08/20 18:17にされた質問と解答を基に質問があります。 https://o
数学
-
6
なんでこんなことがわからない?
数学
-
7
他のスレだとだいたいいるのに数学カテには「そんな中学生レヴェルの質問はするな」とかいうへそ曲がりがい
数学
-
8
cos^2θ/tanθ=1でθを出すことはできますか? 出せるならどうやって出すのかなどを教えていた
数学
-
9
なぜ点Oを通ると分かるのですか? ※後ほど補足で問題の画像貼ります。
数学
-
10
数学II 2つの整式f(x), g(x)の和と積をx-aでわったときの余りが、それぞれb,cであると
数学
-
11
画像の説明で式中の*は掛け算、'は微分を表しているのでしょうか? あと他にもアンダーバー、_とかも出
数学
-
12
ちょっとむずかしいね?
数学
-
13
かんたんで不安
数学
-
14
難しいのでゆっくりよんでください。
数学
-
15
iに絶対値がつくとどうなるのかを教えてください
数学
-
16
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
17
lim x→0 tanxについて
数学
-
18
こうなる理由が分かりません
数学
-
19
質問したい事が2つあります。 ①、以前に質問した2024.5.8 08:24の質問の2024.5.9
数学
-
20
簡単なはずですが教えてください。
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・ことしの初夢、何だった?
- ・【お題】大変な警告
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
数Ⅱの三角関数の単元で、 「三...
-
重分積分の極座標変換について
-
「原点に返る」と「原点に戻る...
-
特殊線形群の生成元
-
なぜベクトルの外積の向きが右...
-
右下の小さい数字について
-
座標上の多角形面積を求める公...
-
教えてください:円の中心座標...
-
複素数平面と座標平面の対応に...
-
数学Bの座標空間の問題
-
2変数関数 難題
-
数学の二次関数
-
大学の複素数の問題なんですが...
-
任意の地点からの回転座標の求め方
-
測量座標と算数座標の違い
-
座標のS/I方向について
-
エクセルのセルの座標の取得
-
赤線の部分 y=a(x-p)(x-q) で...
-
共通解・共有点
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
右下の小さい数字について
-
重分積分の極座標変換について
-
「原点に返る」と「原点に戻る...
-
距離と方向角から座標を求める...
-
空間上の測定された点群から最...
-
測量座標と算数座標の違い
-
楕円の角度とは?
-
等角螺旋(らせん)の3次元的...
-
複素数平面と座標平面の対応に...
-
なぜベクトルの外積の向きが右...
-
三角関数 範囲が-πからπのとき...
-
エクセルでグラフの作り方 軌...
-
「0でない2つのVのベクトルu,v...
-
N点間の中心と重心の求め方
-
複素数平面についてです ①xy平...
-
外積が右ねじの向きであること...
-
距離、方位角から座標を求める方法
-
2点からその延長線上にある点の...
-
座標のS/I方向について
おすすめ情報