
No.5ベストアンサー
- 回答日時:
>2点の座標A,Bの角度を求めたい~・・・・
このままなら答えは0ですけど?
xy座標で、x軸のプラス方向を0度とし、
2点の座標A、Bにより形成される線ABとx軸との角度
ってことですね。
>たとえばA点(0,0)とB点(4,3)を結ぶラインは、底辺Bxと高さByを
>元に三角関数?から30度と求められますが、
sen-senさんの書かれたとおり、これは間違いです。
この場合、Bからx軸へのばした垂線とx軸との交点をCとすると、
三角形ABCができ、そのときの求めたい角度をθとすると、
tanθ=3/4となります。
よって、θ=36.8698...
となります。
>B点がマイナス座標が絡んできた場合などの90度から359度までを
>どう求めていいか悩んでいます。また、A点も(0,0)に限定される
>わけではないので、ますます混乱しています。
>(水平はX軸プラス方向が0度です)
常にx軸のプラス方向が0度でしたら、
1.第一象限にある場合は90度足す。
2.第二象限にある場合はそのまま。
3.第三象限にある場合は270度足す。
4.第四象限にある場合は180度足す。
とすればいいのでは?
簡単な例として、x軸と点A(0,5)と点B(-3,7)によって形成される
線ABとの間の角度は・・・・
まず、図を描いてみると点Bは第一象限にあるので、
最後に求めた角度に90度足せばいいだけです。
さっきと同じように直角三角形を作成します。
すると点Cの座標は(0,7)となります。
辺ABと辺ACとの間の角度は、tanθ=3/2
θ=56.3
以上より、x軸(に水平な線)と線ABとの間の角度は146.3度となります。
こんな感じでいいのでは?
No.6
- 回答日時:
仰っておられるのは、二次元座標平面の上で、AからBへ伸ばした腺が、X軸と作る角度を計算するということだと思います。その場合、AとBが自由な位置にあると、第一象限、第二象限、第三象限、第四象限と、角度が0度から360度まで、色々な値になります。
AからBへ伸ばしたヴェクトルは、AとBの座標を、A(x1, y1)、B(x2, y2)とすると、B-A=(x2-x1, y2-y1)となり、このxとyの値に対応する点を、仮にC点とすると、C(x2-x1, y2-y1)という点と、原点O(0, 0)のあいだで、原点からCに伸ばした腺が、X軸と作る角度のことになります。
その場合、C点がどこにあるかで、どこの象限にいるかが分かるのであり、どこの象限にあるかを、まず判断して、角度を考えると、混乱しないです。
C(x2-x1, y2-y1)をまず計算してみてください。そこで、
y2-y1>=0 かつ x2-x1>=0 の場合は、第一象限、つまり角度θは、0=<θ=<90
y2-y1>=0 かつ x2-x1=<0 の場合は、第二象限、つまり角度θは、90=<θ=<180
y2-y1=<0 かつ x2-x1=<0 の場合は、第三象限、つまり角度θは、180=<θ=<270
y2-y1<0 かつ x2-x1>=0 の場合は、第四象限、つまり角度θは、270<=θ<360
y2-y1=0 かつ x2-x1=0 の場合は、角度θは、0=θ=360となるので、360の方は、一周して、0に戻ったので、無視します。
このように、大体C点がどこにいるかで、角度がどういう数字になるか、見当がつきます。
その上で、tanθ=(y2-y1)/(x2-x1) の式で、tanθを求めて、三角関数表を見ながら、θの値を求めるのですが、その時、Cの位置で、θの二つの値のどちらの角度かを、上の四つに分けた範囲に当て嵌め、該当する角度を答えにします。
C点の座標を求めたとき、図に描いてみると、どこになるのか、はっきりします。
No.4
- 回答日時:
直角三角形を使って求めます
A点からB点に直線を結びますA点からX軸に水平な線、B軸からY軸に水平な
線を引くとC点(4,0)で交わります
tanを求めると
tanθ=3/4=0.75となります
後はこの値を三角関数表で調べれば
およそ36.8度ぐらいになります
例題)A(1,3)、B(-3,-2)の場合
AからY軸に水平に直線を引きます
BからX軸に水平に直線を引きます
C点(1,-2)で交わります
BC間は4、CA間は5となります
tanθ=5/4=1.25
三角関数表よりおよそ51.3度となります
直角三角形を作って解くと簡単です
実際に描いてみたほうがいいと思います
No.3
- 回答日時:
高校数学Bで今は扱っているベクトルか,同じく数学Bの複素数平面の話はまだ未習でしょうか.
ベクトルの概念を使うのが適切でしょう.
2点 A(-1,2√3), B(-3,4√3)を例に考えると
点Aにいる自分が点Bに移動する時の移動量は,
x軸方向に-2(つまりx軸方向の負の向きに大きさ2),
y軸方向に+2√3(つまりy軸方向の正の向きに大きさ2√3),
です.
これを, ベクトルAB=(-2,2√3)と表します.[正確にはABの上に右向きの矢印→をつけますが, うまく打てないのでこれで許してください.]
すると, これは原点O(0,0)から点(-2,2√3)まで移動するときの移動量と同じです. (『左に2歩, 上に5歩』などというのと同じですね.)
するとこのベクトルABを, 原点を出発点にして書いたとき,到着点は点(-2,2√3)で,これとx軸の正の向きとがなす角(0°~360°)を求めれば,元の図で求めたい角と同じです.ちなみに,今の場合,120°です.
一般には,A(a,b),B(c,d)とすると,移動量を表すベクトルは
ベクトルAB=(c-a,d-b)
つまり (終点)-(始点)をx座標もy座標もやると,求まります.[正確にはx成分,y成分と言ったほうがいいのでしょうが.]
詳しくはベクトルのあたりの本をご覧になるといいのではないでしょうか.
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 物理学 原点中心とする半径10cmの演習上、質点が1分間に600回の割合で反時計回りに運動している。 (1) 4 2023/05/29 12:46
- 物理学 角速度ベクトルにつきまして 3 2022/08/09 15:44
- 物理学 高1力学の運動量の問題です。問題を一通り解いたのですが、行き詰まってしまったのでご回答頂ければ嬉しい 3 2022/06/29 11:20
- 数学 2次関数y=ax^2のグラフは点A(4,2)を通っている。y軸上に点BをAB=OB(Oは原点)となる 1 2022/04/08 00:05
- 数学 極座標A(2,π/6)となる点を通り、OAに垂直な直線lの曲方程式を求めよ という問題を直交座標を利 1 2022/08/04 17:31
- 物理学 物理 2 2023/01/17 13:31
- 中学校 中1数学 比例のグラフの座標の読み取り 4 2023/03/28 12:26
- 数学 三角比の拡張でつまづいています 5 2022/06/25 09:48
- 工学 アクチュエータ、制御について質問です 1 2023/07/10 17:28
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
右下の小さい数字について
-
座標(x,y)間(=2点)の...
-
「原点に返る」と「原点に戻る...
-
外積が右ねじの向きであること...
-
距離と方向角から座標を求める...
-
測量座標と算数座標の違い
-
重分積分の極座標変換について
-
エクセルでグラフの作り方 軌...
-
距離、方位角から座標を求める方法
-
生データーからのグラフから関...
-
なぜベクトルの外積の向きが右...
-
二点の座標から角度を求めるには?
-
東大過去問 最大と最小
-
空間上の測定された点群から最...
-
三角関数 範囲が-πからπのとき...
-
【数学】 解説の下から4行目が...
-
楕円の円周上の座標を求める計...
-
複素数平面についてです ①xy平...
-
二次関数に内接する長方形の問...
-
等角螺旋(らせん)の3次元的...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
座標(x,y)間(=2点)の...
-
「原点に返る」と「原点に戻る...
-
右下の小さい数字について
-
測量座標と算数座標の違い
-
距離と方向角から座標を求める...
-
距離、方位角から座標を求める方法
-
等角螺旋(らせん)の3次元的...
-
2次関数y=ax^2のグラフは点A(4,...
-
二次関数 (2)のAB=2√3である...
-
対数螺旋の方程式と書き方について
-
2点からその延長線上にある点の...
-
楕円の角度とは?
-
斜距離の算出公式はありますか?
-
AB=2である2定点A、Bに対して...
-
楕円の円周上の座標を求める計...
-
複素数平面と座標平面の対応に...
-
なぜベクトルの外積の向きが右...
-
重分積分の極座標変換について
-
三角関数 範囲が-πからπのとき...
-
「0でない2つのVのベクトルu,v...
おすすめ情報