プロが教える店舗&オフィスのセキュリティ対策術

F線形空間Vに於いて,
0でない2つのVのベクトルu,vが直交⇒u,vは一次独立。
が成り立つと思います。

u,vが一次独立⇒u,vは直交。
は一般に成り立つのでしょうか?
成り立たないならばどんな反例がありますでしょうか?

A 回答 (2件)

例えば(1,0,0),(1,1,0),(1,1,1)は基底をなしますね。


要するに、斜交座標が作れれば一次独立になるわけです。

直交座標は斜交座標の特別なものなので、
直交することは一次独立であることの十分条件。
    • good
    • 1
この回答へのお礼

即レス有難うございます。
納得致しました。

お礼日時:2008/02/27 01:28

一次独立な二つのベクトルを普通に想像すれば明らかに成立しませんね。

    • good
    • 0
この回答へのお礼

有難うございます。
例えばR^3で一次独立だか直交でない2つのベクトルの例ってどのようなものが挙げられますでしょうか?

お礼日時:2008/02/27 00:30

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


人気Q&Aランキング