
No.3
- 回答日時:
レベルが低かったらすみません(#2の方が一言で書かれています)
>想像も付かない世界
を想像するとき、やはり私は想像できる世界に置き換えます。
~~~
私は今、野球場のピッチャーマウンドに立っています。このピッチャーマウンドは原子核の大きさらしい。(量子力学的には違うのでしょうが、ここはスケールの実感のみを実感しています)。そして、そこから見て観客席を私を中心に野球ボールがぐるぐる回っています。それが一番内側の電子らしいです。
そこで、原始の内側ってスカスカに空いているんだぁ、と私は実感します。
~~~
紙に直線を長く引き、どこかにメモリを1ついれ0と書きます。私は小さくなってその上に飛び乗ります。そこは実数をあらわす世界です。そこを適当に歩くと踏みだしたところの数が電光掲示板に出てきます。
それは3や5という整数だったり、11/13や0.333...という分数だったり、3.14...や1.414という無理数です。
では、この線以外の向こうの辺りには数はないのでしょうか?
X^2 + 2 = 0の解はどう考えてもこの線にはありません。
そこで、さっきの直線と垂直方向に線を引きます。そこが虚数の軸です。その新しい軸のおかげで今の実数軸から、新しい数の平面へ離れることができました。
電光掲示板にはa + bi形でいろいろ表示されます。
そこは、三角関数と指数関数が美しくからみあう大平原でした。
って、くどいだけ?(^^;
この回答へのお礼
お礼日時:2005/07/04 05:46
おお!!
新しい軸ですか。この考え方もわかりやすいです。
今までもボンヤリと、虚数は数の世界を広げるものであることはわかっていたのですが、そう言われるとしっくりきます。
美しくからみあう大平原ってのも良いですね。
No.2
- 回答日時:
たしかに数学の歴史において虚数を実在として受け入れる、ということにずっと抵抗があったのは事実です。
大雑把に言って、
1.2次方程式の時代。そういう解は無意味な解として捨てられた。
2.3次方程式の解の公式。計算上どうしても必要になったので、便宜的に受け入れた。しかしあくまで実在しない数で、道具としてのみ有用である、と。
3.18~19世紀にかけて複素数の関数などもいろいろ考察され、結局受け入れざるを得なくなった。
というようなことがありました。しかし現在では量子力学をはじめ、これ無しではなりたたない分野はいくつもあります。
結局日常的に使わないだけで、抽象的な観念としては普通の数と大して違わないのです。(数はそのあたりに浮かんでいたり歩いていたりはしません。これまた人類の文化が発明したものです)
負の数にせよ無理数にせよ最初は受け入れられませんでした。自然に発生したのは文字通り自然数ぐらいで、分数なども人類の文化が生み出したものですのでたとえばギリシアでは分数がありませんでした(かわりに比がありました)。
数直線の概念が出てきて、実数はわかりやすいものになったわけで。
そういう意味ではガウスによる複素数平面の発明がわかりやすい説明でしょう。
ただし数直線が実数自身ではないように、複素数平面イコール複素数ではありませんから、勘違いされないように。
参考URL:http://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0% …
この回答へのお礼
お礼日時:2005/07/04 05:44
「日常的に使わないだけ」という表現が非常にわかりやすく感じました。
確かに、虚数に対して少し特別なように感じていました。URLも参考にさせていただきます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学の3大分野、代数・幾何・解析
-
未知数の数と必要な方程式の数...
-
3次、4次方程式は、具体的に何...
-
数学IIの問題です。 kを定数と...
-
2x3行列の逆行列の公式
-
aを定数とするとき、次の方程式...
-
数列と確認
-
数学I
-
2次関数 y=ax2+bx+cのxを求め...
-
因数分解って何に役立つの?
-
何年生で習う範囲ですか?
-
円柱と円の方程式
-
二次方程式? 2次方程式?
-
線形、非線形、同時、非同時の違い
-
地球外知的生命体の数を推定す...
-
パッと調べてみたところ無かっ...
-
高2数学の質問です。 円の方程...
-
方程式って何次まで解けますか?
-
円の方程式?円の関数じゃないの?
-
エクセルでxを求めたいのですが!
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
2次関数 y=ax2+bx+cのxを求め...
-
数学IIの問題です。 kを定数と...
-
この問題を運動方程式で解くと...
-
地球外知的生命体の数を推定す...
-
未知数の数と必要な方程式の数...
-
何年生で習う範囲ですか?
-
エクセルでxを求めたいのですが!
-
数学の3大分野、代数・幾何・解析
-
円の方程式?円の関数じゃないの?
-
xの5乗=1 の答えを教えてく...
-
気象学におけるω方程式について
-
2x3行列の逆行列の公式
-
z^3=1を満たす複素数を答えよ、...
-
高2数学の質問です。 円の方程...
-
3次、4次方程式は、具体的に何...
-
遊んでいそうな顔=イケメンモ...
-
2次関数と2次方程式の違い
-
カシオの関数電卓
-
勝利の方程式って変じゃない?
-
方程式kx²+4x+3=0がただ1つの実...
おすすめ情報