(確率を扱った問題のある期待値を求める問題の過程なのですが)
すべての固有値が1より小さいn×n行列Pがあります。この行列Pのk乗(P^k)のkを無限大にすると、行列Pは0(ゼロ)に収束するのです。これを求めるにはジョルダンの標準形を使用して求めるらしいのですが、その具体的な計算方法がわからなくて困っております。本など調べてみたのですが力不足で申し訳ありません。もしよければその計算方法や流れなど教えていただければ幸いです。よろしくお願いいたします。
行列について:
確率を扱った行列ですので、固有値(成分)は全て1より小さい分数で、対角成分の上(対角成分を除いた右上の三角形部分)は全て0です。左下の三角形部分には1より小さい分数が入っています。
No.4ベストアンサー
- 回答日時:
ほとんど考えずに書いているので未満を以下と書いてしまいました
もしジャルダンを使うのがいやならもっと簡単な方法が有ります
定理:
Pをn次正方行列とすると適当なユニタリ行列行列を使って△≡U^-1・P・Uを上三角行列にすることができる。
この証明ははるかに簡単なのでこっちのほうがいいかもしれません
ジョルダンの場合にはこの証明を何通りか集めたものが一冊の本になっています
△の対角戦場には個誘致が並びます
よってP=U・△・U^-1だから
P^n=U・△^n・U^-1です
個誘致がすべて絶対値1未満であれば
△^nが0に収束するのを示すのは簡単です
対角戦場に0が並んだ上三角を2畳してみれば猿でもわかります
No.3
- 回答日時:
もしジャルダンを使うのがいやならもっと簡単な方法が有ります
定理:
Pをn次正方行列とすると適当なユニタリ行列行列を使って△≡U^-1・P・Uを上三角行列にすることができる。
この証明ははるかに簡単なのでこっちのほうがいいかもしれません
ジョルダンの場合にはこの証明を何通りか集めたものが一冊の本になっています
△の対角戦場には個誘致が並びます
よってP=U・△・U^-1だから
P^n=U・△^n・U^-1です
個誘致がすべて絶対値1以下であれば
△^nが0に収束するのを示すのは簡単です
対角戦場に0が並んだ上三角を2畳してみれば猿でもわかります
No.2
- 回答日時:
過去にまったく同様の質問があります。
参考にしてください。非対角成分が具体的に与えられるとn乗計算は大変にややこしくなるので、やはりジョルダン標準形に変換してn乗をするほうが分かりやすいです。二項係数などを利用して具体的に書くことができます。対角行列ではないので、非対角成分の上から評価して0に収束することを示すことになると思います。
参考URL:http://okweb.jp/kotaeru.php3?q=1457557
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- その他(プログラミング・Web制作) プログラミング pythonの問題について 2 2022/04/19 00:41
- 数学 場合の数、確率 29 導入問題 ( 円周上の鋭角三角形) 4 2023/07/06 18:00
- 数学 線形代数 正則 階数 3 2023/03/22 07:52
- 数学 上三角行列のn乗の証明 2 2023/07/23 21:45
- 数学 線形代数の正規直行系についての問題がわからないです。 1 2022/07/16 11:20
- 統計学 確率統計の問題です。 3 2022/04/07 04:39
- 数学 連立微分方程式の解き方について 7 2022/12/16 13:39
- 数学 数2Bの数列の問題です。 自分は、 まず数列 an=ar^(n-1)と置き こちらの問題の、y= の 1 2022/07/07 16:26
- 数学 確率について 事象Aが起こる確率が0.25である独立行列において、試行回数を5回とした時Aの起こった 2 2022/06/06 19:46
- 数学 数学の線形代数についての質問です。 0 1 0 0 0 1 1 0 0 の3×3の行列をAとする時、 1 2023/07/09 01:28
このQ&Aを見た人はこんなQ&Aも見ています
-
あなたの「必」の書き順を教えてください
ふだん、どういう書き順で「必」を書いていますか? みなさんの色んな書き順を知りたいです。 画像のA~Eを使って教えてください。
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
これが怖いの自分だけ?というものありますか?
人によって怖いもの(恐怖症)ありませんか? 怖いものには、怖くなったきっかけやエピソードがあって聞いてみるとそんな感覚もあるのかと新しい発見があって面白いです。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
「行列(線形)の収束について」
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・遅刻の「言い訳」選手権
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
おすすめ情報