AIと戦って、あなたの人生のリスク診断 >>

題名の通りです。中空の方は、外径d1内径d2とし中空でない方は径d1としました。中空の方の断面二次極モーメントI1=π×(d1^4-d2^4)/32、中空でない方の断面二次極モーメントをI2=π×d1^4/32とし、I1-I2を計算すると-π×d2^4/32となり、負になり、中空でない方が断面二次極モーメントが大きくなってしまいます。なにがおかしいのか教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

 


 
 参考までに;
「同じ量の材料で同じ長さに作った中空円筒と無垢の丸棒とどちらが曲げに強いか。」
これなら質量が同じだから I1 と I2 の比較になります。


円管1の外径d,内径a、丸棒2の径D として、
丸棒の断面積πD^2 = 円管の断面積π(d^2-a^2)
だから
  D^2 = (d^2-a^2)  …(1)

I1の (d^4-a^4)の部分は
(d^4-a^4) = (d^2+a^2)(d^2-a^2)
これに(1)式を使って
= (d^2+a^2)D^2
さらに
={(d^2+a^2)/D^2 }D^4
と強引に書きます。D^4が欲しいのです。D^4は丸棒のI2ですね。
見やすいように {…} を Kと書くと
= KD^4

ゆえに円管の断面二次極モーメントは、
I1 = (1/32π)KD^4 = KI2 = 丸棒のK倍強い。
です。


Kを整理すると
k = (d^2+a^2)/D^2  d^2に(1)を使うと
= (D^2+2a^2)/D^2
= 1+2(a/D)^2
= 1+2(穴ありの穴径/穴無しの外径)^2



ちなみに
I1とI2の差は
I1-I2 = I2(k-1) = 丸棒の 2(a/D)^2倍です。
 
 
    • good
    • 0

 


 え?肉が詰まってる方が曲げに強いのは当たり前でしょう。 よくある「中空材は『重さの割に』強い」ことの話でしょうか。もしそうなら 「 Iと質量の比」どうしを較べます。

話をぜんぶ単位長さで、外径 D、内径 d とします。
質量Mは 密度ρ×体積、体積=断面積×長さゆえ
管の方は M1 = ρπ(D^2-d^2)
棒の方は M2 = ρπD^2

(D^4-d^4) = (D^2+d^2)(D^2-d^2)
だから
比強度1 = I1/M1 = (1/32ρ)(D^2+d^2)
比強度2 = I2/M2 = (1/32ρ)D^2

(比強度1)-(比強度2) = (1/32ρ)d^2 >0
ゆえ、
くり抜いた d の分だけ強くなった。
実は絶対強度は落ちてるんだけど、重さの割に強くなったと言える、ですね。
 
 

この回答への補足

一体何の経験者ですか?同じ断面積なら、中実より中空の方が断面二次極モーメントは大きい(ねじり剛性が強い)のです。重さの割にということではありません。

補足日時:2005/12/19 22:22
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q長方形断面の断面2次極モーメントについて

長方形断面の断面2次極モーメントIpを調べていくと、サンブナンのねじり定数Jという言葉がでてきます。
使い方がどれも混同してて、よくわかりませんでした。
で、一つ目の質問。

(1)長方形断面の断面2次極モーメントIpのことを、サンブナンのねじり定数Jと言うのですか?

長方形断面の断面2次極モーメントIpの値を知りたいのですが、一般にIp=Ix+Iyとなっています。

(2)a×b断面だとすると、Ip=(ab(a^2+b^2)/12となると思うのですが、これは間違いですか?

Aベストアンサー

私は,サンブナンのねじり定数という言葉は知らないのですが,以下のような意味だろうと推測致します。

(1)回転対称断面の場合,断面2次極モーメント(Ip)は,部材のねじり抵抗係数で,
Ip=∫r^2・dA=Ix+Iy
にて算定します。
ねじりモーメント(Mt)によって,ねじり角(θ)が生じたとすると,ねじり角は,
θ=Mt/(G・Ip)
で算定できます。この時の,
(G・Ip)
は,サンブナンのねじり剛性(torsional stiffness 又は torsional rigidity)と呼ばれる定数です。
ただし,(G)は,剪断弾性係数です。サンブナンのねじり定数というのは,多分,この「ねじり剛性」の事だと思うのですが,如何でしょうか。

(2)長方形断面(axb)の場合,
Ip=Ix+Iy=(a^3・b/12)+(a・b^3/12)
ですので,
Ip=(ab(a^2+b^2))/12
です。

Qねじり剛性係数と断面二次モーメントの関係

ねじり剛性係数と断面二次モーメントの関係
縦横XYの断面二次モーメント値からねじり剛性係数、またはそれに相等するねじり変形しにくさを表す数値を出す方法を探しています。

いつくかある断面形状のねじり強さの比率を知りたいのです。材質は考慮しません。
単純にXYの断面二次モーメント値をかけ算して、その値の比率で判断していいものでしょうか?

具体的には乗り物のフレームを設計して、すでに一度専用のパイプを試作しました。
予想以上に強かったので断面を小さくして軽量化を図りたいのですが、一体どれくらい落としてよいものか判断がつかないのです。
結局は当てずっぽうなのですが、最初のものに比較して何%ダウンという指標があれば有力な判断材料となります。
宜しくお願いいたします。

Aベストアンサー

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断面の両端面が変形後も平面となるように拘束されている場合(全周溶接などによって)には、Jはやはり式(2)で定義できます。
今の質問の構造の場合、フレームと書いていらっしゃるので、棒の両端面はしっかりと拘束されていると思われ、式(2)が適用できます。

これがあなたの質問に対する直接の回答となります。

以上のほか、棒の断面の両端面が変形後も平面となるように拘束されていない場合のケースについて補足説明しておきます。
棒を両手で握って捩ると、断面が円でない場合には、両端面が変形後は軸方向に波打った形状となって、平面とはなりません。(この現象が顕著に現れる例としては、紙を丸めて筒状にして捩った場合があげられます。)
このような捩りの状態を「サン・ブナンの捩り」と呼びます。
断面が長方形の棒を、両端を溶接せず、補助金具などを用いて、他の部材にねじ止めしているような場合には、このサン・ブナンの捩りが発生しやすくなります。
この場合の注意としては、
J<<Ip ・・・(3)
となってしまうことです。
この場合の取り扱い方については、一般の材料力学の本はごまかしているのが普通です。
あなたの場合、「予想以上に強かった」と書かれているので、サン・ブナンの捩りの状態ではなく、両端面がガッシリと他部材に溶接されているケースと推測しています。

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断...続きを読む

Q断面二次極モーメントについて

断面二次極モーメントを調べたところ、
Ip=∫A r2dAで表せるのが、わかりました。
もし企業の面接などで、小中学生にもわかるように説明しろと言われた場合、どのように答えれば宜しいのでしょうか?
わかりやすく説明ができる人がいたら教えて下さい。
お願いします。

Aベストアンサー

返事遅れてすいません。
確かにあまりにも説明不足でしたね^^;

断面二次モーメントとは、ようするに変形のしやすさのことです。断面一次モーメントと違って、距離の2乗をかけるので「二次」になっているわけです。

断面二次モーメントならこんな感じで説明できるんですが・・・断面二次極モーメントとなると小学生にわかるように説明するのは私には難しいかもしれません。
一応説明しておきますと、例えばある物体があったとして、直交座標軸x、yをとります。その原点を通ってx、y軸に垂直な軸に関する断面二次モーメントが「断面二次極モーメント」です。ちなみに、計算するときはx、y軸のそれぞれの断面二次モーメントを求めれば、それを足し合わせたものが断面二次極モーメントになります。

これじゃ簡単な説明とは言えないでしょうか^^;

Q断面係数と極断面係数

断面係数と極断面係数の違いについて質問です。
中実丸棒の場合、断面係数Zは

Z=πd^3/32

ですが、極断面係数Zpは

Zp=πd^3/16 となっています。

断面係数は(断面二次モーメント)÷(中立軸からの最大距離)で計算できますが、極断面係数はどうやって計算するのでしょうか。

Aベストアンサー

 断面の正面図が、紙に書かれていると想像して下さい。曲げ作用は、紙面上に横に引かれた中立軸を中心に、断面全体を「紙の前後に回転」させます。
 ねじり作用は、「紙面に垂直な」中立軸を中心に、断面を「紙面内で回転」させます。
 だけど、中立軸を求める発想はどちらも同じです。曲げ作用なら、
  ・曲げ歪みは、中立軸からの符号付き距離に比例する。
  ・曲げモーメントは偶力だから、応力合計は0。
  ・応力は歪みに比例する。
という事から、断面剛性一定なら、
  ∬(y-y0)dxdy=0
から中立軸位置y0を計算できます。∬の積分範囲は断面全体で、結果は重心ラインです。
 ねじり作用なら、同じ仮定から、
  ∬|r|e(r)dxdy=0
で計算できます。ここでベクトルrは、ねじりの中立軸位置を(x',y')とした場合、r=(x-x',y-y')で、e(r)はrと左回りに直行する単位ベクトルです。結果は断面剛性一定なら、重心位置を(x0,y0)として、
  (x',y')=(y0,x0)
だったと思います(確認してください)。円形断面なら、やっぱりその中心になります。
 最後に、極断面二次モーメントも、断面二次モーメントと同じ発想で、
  Ip=∬|r|^2dxdy
です。

 断面の正面図が、紙に書かれていると想像して下さい。曲げ作用は、紙面上に横に引かれた中立軸を中心に、断面全体を「紙の前後に回転」させます。
 ねじり作用は、「紙面に垂直な」中立軸を中心に、断面を「紙面内で回転」させます。
 だけど、中立軸を求める発想はどちらも同じです。曲げ作用なら、
  ・曲げ歪みは、中立軸からの符号付き距離に比例する。
  ・曲げモーメントは偶力だから、応力合計は0。
  ・応力は歪みに比例する。
という事から、断面剛性一定なら、
  ∬(y-y0)dxdy=0
...続きを読む

Q断面二次モーメントと慣性モーメント

現在物体の慣性モーメントを求めようとしています.

そこで疑問が生じたので質問します.

材料力学では断面二次モーメント=慣性モーメント
となっています.

ですが慣性モーメントって∫r^2 dmですよね?

次元が全く違うしなぜ慣性モーメントなんでしょうか?

また慣性モーメントと断面二次モーメントの関係があれば教えてください

よろしくお願いします.

Aベストアンサー

そうですね。#3の説明は,理解するには良い方法と思いますが,厳密に言うと違います。

慣性モーメントの定義を分かりやすく簡単に説明すると,慣性力は物体が現在の状態を維持しようとする力,つまり,物体の運動や変形に抵抗する力の事です。モーメントというのは回転に関する運動率,つまり,回転に関する係数です。合わせて,回転に対する抵抗係数が慣性モーメントです。

係数ですから次元に関係はありません。と言うよりも,適用される状況によって異なった次元を持ってもかまわないと言うことです。

そこで,慣性モーメントとは,動力学では,回転運動に対する抵抗係数で,静力学では,回転変形(曲げ変形)に対する抵抗係数です。

J=∫r^2 dmやI=∫r^2 dAという算定式は,一般的に解釈すれば,「慣性モーメントは,物体が物体の任意の軸に関して,物体内の微小部分と軸から微小部分までの距離の2乗との積を全物体について合算した値である」と定義できると思います。
質量慣性モーメントの場合,この微小部分が微小質量であり,断面2次モーメントの場合微小部分が微小断面積になります。

そこで,
>「材料力学では」断面二次モーメント=慣性モーメント
という定義がされているものと思いますが,ここでは,「材料力学では」と言う条件が重要な部分だと思います。

でも,こんな説明をしている書籍を見たことはありません。断定的な説明をしていますが,私の理解している内容を文章にしただけですので,ほぼ合っていると思いますが,多少の違いがあるかもしれません。他の専門家の意見も聞いて頂くと良いと思います。

そうですね。#3の説明は,理解するには良い方法と思いますが,厳密に言うと違います。

慣性モーメントの定義を分かりやすく簡単に説明すると,慣性力は物体が現在の状態を維持しようとする力,つまり,物体の運動や変形に抵抗する力の事です。モーメントというのは回転に関する運動率,つまり,回転に関する係数です。合わせて,回転に対する抵抗係数が慣性モーメントです。

係数ですから次元に関係はありません。と言うよりも,適用される状況によって異なった次元を持ってもかまわないと言うことです。
...続きを読む

Q円の断面二次モーメント

半径(r)から求める円の断面二次モーメントがわかりません。

直径(D)から求める場合は
dA=π(D/2+dD)^2-π(D/2)^2
=πDdD
I=∫y^2dA=∫πD^3dD=πD^4/64

となるのは理解しました。
D/2=r
なので
上記の結果から
I=πr^4/4
になるのもわかります。

しかし、rからもとめる場合
dA=π(r+dr)^2-π(r)^2
=2πrdr
I=∫y^2dA=∫2πr^3dr=πr^4/2
となってしまいます。

Ip=Ix+Iy
Ix=Iy
なので
Ix=Ip/2
=(πr^4/2)/2
=πr^4/4

となる。
rの場合に上記の理由で1/2するのならば、Dの場合1/2もするのではないのでしょうか?
しかし、Dの場合は1/2すると答えはかわってしまうので1/2しない。
ここがわかりません。
なぜ?
断面二次極モーメントだからと書いてあったのですが、この言葉も知りません。

お願いします。

Aベストアンサー

>半径(r)から求める円の断面二次モーメントがわかりません。

まず断面二次モーメントには2種類あります。ひとつは
「断面の図心を通るx軸やy軸に対する断面二次モーメント」
で、IxやIyと書きます。Ixを求めるには、断面をx軸に平行に切り刻んだ面積をdA、
x軸からそこまでの距離をyとすると、Ix=∫y^2dAとなります。

IxやIyは長方形断面なら求めやすいのですが、円形断面のときはIx(=Iy)を求める
のが面倒なので、もうひとつの、「断面の図心に対する断面二次“極”モーメント」
を先に求めます。これはIpと書きますが、常にIp=Ix+Iyの関係があることを
利用するのです。Ipの定義は、断面を同心円状に切り刻んだ面積をdA、図心から
そこまでの距離(半径)をrとすると、Ip=∫r^2dAとなります。

大事なのは先程とdAの中身が違うということです。ですから、

> I=∫y^2dA=∫πD^3dD=πD^4/64

この書き出しを見て、両者を混同されているのではないかと思いました。また、

> dA=π(D/2+dD)^2-π(D/2)^2
> =πDdD

これもちょっと違います。詳しくは以下を参考にしてください。ちなみに円の面積Aを、A=f(r)=πr^2で表しています。

[rで解く場合]

dA=f(r+dr)-f(r)
 =π(r+dr)^2-πr^2
 =2πrdr

Ip=∫ r^2 dA
 =∫ 2πr^3 dr (積分範囲0~r)
 =πr^4/2
ここにr=D/2を代入すると
 =πD^4/32

[Dで解く場合]

dA=f((D+dD)/2)-f(D/2)
 =π((D+dD)/2)^2-π(D/2)^2
 =(πD/2)dD

Ip=∫ (D/2)^2 dA
 =∫ πD^3/8 dD (積分範囲0~D)
 =πD^4/32
となり、一致しました。しかしrを使ったほうが途中が分数にならないため楽です。

最後に断面二次モーメントIx,Iyは、
Ix=Iy=Ip/2=πr^4/4=πD^4/64

わからなければ補足して下さい。

>半径(r)から求める円の断面二次モーメントがわかりません。

まず断面二次モーメントには2種類あります。ひとつは
「断面の図心を通るx軸やy軸に対する断面二次モーメント」
で、IxやIyと書きます。Ixを求めるには、断面をx軸に平行に切り刻んだ面積をdA、
x軸からそこまでの距離をyとすると、Ix=∫y^2dAとなります。

IxやIyは長方形断面なら求めやすいのですが、円形断面のときはIx(=Iy)を求める
のが面倒なので、もうひとつの、「断面の図心に対する断面二次“極”モーメント」
を先に求めます。これはIpと書...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q降伏点 又は 0.2%耐力とはなんですか?

降伏点 又は 0.2%耐力というものを教えて下さい。
SUSを使って圧力容器の設計をしようとして、許容引張応力とヤング率だけでいいと思っていましたが、どうも降伏点 又は 0.2%耐力というものも考慮しなければいけないと思ってきました。
どなたかご助言お願い致します。

Aベストアンサー

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現れます。
 これを降伏と呼びます。

 一般に設計を行う場合は、降伏強度に達することをもって「破壊」と考えます。
 降伏強度は引張強度より低く、さらに降伏強度を安全率で割って、
 許容応力度とします。大きい順に並べると以下のような感じです。

 引張強度>降伏強度>許容応力度

●0.2%ひずみ耐力
 普通鋼の場合は降伏点が明確に現れます。
 引張荷重を上げていくと、一時的にひずみだけが増えて荷重が抜けるポイントがあり
 その後、ひずみがどんどん増え、荷重が徐々に上がっていくようになります。

 ところが、材料によっては明確な降伏点がなく、なだらかに伸びが増えていき
 破断する材料もあります。鋼材料でもピアノ線などはこのような荷重-ひずみの
 関係になります。

 そこで、このような明確に降伏を示さない材料の場合、0.2%のひずみに達した強度を
 もって降伏点とすることにしています。

●二つの材料強度
 金属材料の機械的特性のうち、一般に強度と呼ばれるものには
 ・引張強度
 ・降伏強度
 この二つがあります。

 引張強度はその名のとおり、引張荷重を上げていくと切れてしまう破断強度です。
 いわば最終強度です。

●降伏強度とは
 さて、ある材料を用意し、引張荷重を徐々にかけていくと、荷重に比例して
 ひずみ(伸び)が増えていきます。
 ところが、引張強度に達する前に、荷重とひずみの関係が崩れ、
 荷重が増えないのに、ひずみだけ増えるようなポイントが現...続きを読む

Q引張応力とせん断応力の合成応力?

物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?
引張応力とせん断応力を合成した応力が存在し,それが許容応力以下かを調べる必要があるのでしょうか?
その場合は,計算方法も教えて欲しいです.

Aベストアンサー

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する」は同義語ではありません。

一般的な許容応力法の検討では、

3次元物体には、3方向(x、y、z)の材軸が存在します。この物体に3方向の軸力と剪断力が同時に作用する場合、この物体に生じる最大応力は、
σmax=√(σx^2+σy^2+σz^2+3τ^2)
で求めることができます。

もし、同時に剪断力を受ける物体が細長い物体で、1方向(x方向)にのみ引張りが生じているならば、
σy=σz=0
となって、
σmax=√(σx^2+3τ^2)
で計算することができます。この最大応力が許容応力を超えないことを確かめます。

多少、簡単に書きすぎたかもしれませんが、基本的な流れとしては、合っていると思います。
また、破壊についても基本的な考え方は同じですが、式の表現方法が多少異なり、より詳細な表現がされ、比較の対象が「許容応力」ではなく「降伏応力」になります。

詳しくは、応力テンソル、ミーゼス、トレスカなどのキーワードをgooなどで検索すると詳しい説明のあるサイトを見ることができます。

1>物体に,引張応力とせん断応力がかかっている場合に破壊するかどうかを調べる場合は,

2>引張応力を単独で,せん断応力を単独で,許容応力以下かどうかを調べるだけでいいのでしょうか?

考え方のアドバイスを!!

1:破壊するかどうかは、No1さんのおっしゃている降伏条件等を用いて調べます。

2:許容応力は、弾性範囲の実務的な設計で採用されることの多い概念ですので、安全率がかけてある場合が多いです。

許容応力=破壊応力x安全率

ですから、「許容応力を超える」と「破壊する...続きを読む

Q比重の単位って?もうわけわからない・・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??なぜ、この場合、厚さだけはmmの単位で、縦と横はmでの計算をするのでしょうか?

比重ってのは単位はどれに合わせてすればいいのでしょうか?

そして円筒の場合はどのように計算するのでしょうか?
まず、円の面積を求めて、それに長さを掛けるのですよね?
これは円の面積の単位はメートルにして、長さはミリで計算するのでしょうか??
わけわからない質問ですみません・・・。もうさっぱりわけがわからなくなってしまって・・。うんざりせずに、解かりやすく、教えてくださる方いましたらすみませんが教えて下さい・・。

比重というのは、単位はなんなのでしょうか??
鉄の比重を7.85で計算すると考え、以下の疑問に答えてもらいたいのですが、
縦100mm・横100mm・厚さ6mmの鉄板の重さを計算したい場合、
100×100×6×7.85で計算すると、471000になります。
全部mに単位をそろえて計算すると、
0.1×0.1×0・006×7.85で、0.000471になります。

これで正確にkgの単位で答えを出したい場合、
0.1×0.1×6×7.85で、答えは0.471kgが正解ですよね?

・・・全く意味が解かりません。普通、単位は全部揃えて計算するものですよね??...続きを読む

Aベストアンサー

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g/cm3)=471g=0.471kg
と計算します(cmとgで計算しているのでCGS単位系と呼びます)

円筒の場合も同様に
体積×密度で求めます
円筒の体積=底面積(円の面積半径×半径×円周率)×高さ
です

比重=密度で計算するならば、水が1gになる体積1cm3を利用するために長さの単位をcmに直して計算してください
計算結果はgで出るのでこれをkgに直してください

最初からkgで出したい時は
水の密度=1000(kg/m3)
(水1m3の重さ=100cm×100cm×100cm×1g=1000000g=1000kg)
を利用して
目的の物質の密度=1000×比重(kg/m3)
でも計算できます
(このようにm kgを使って計算するのがSI単位系です)

0.1×0.1×6×7.85は#4の方がおっしゃるとおり
0.1×0.1×0.006×1000×7.85の0.006×1000だけ先に計算したのだと思います

#3番の方の説明が完璧なんですが、言葉の意味がわからないかもしれないので補足です

比重は「同じ体積の水と比べた場合の重量比」です
水の密度は1g/cm3なので、鉄の密度も7.85g/cm3になります
(密度=単位堆積あたりの重さ)
重さを求める時は「体積×密度(比重ではありません)」で求めます

おっしゃるとおり、計算をする時は単位をそろえる必要があります
100(mm)×100(mm)×6(mm)×7.85(g/cm3)ではmmとcmが混在しているので間違いです
長さの単位を全部cmに直して
10cm×10cm×0.6cm×7.85(g...続きを読む


人気Q&Aランキング