半導体を卒研テーマに選んでいる者です。各種半導体の特性一覧表を見ていて
気づいたのですが、正孔の有効質量という項目があったのです。しかも、重い
正孔と軽い正孔に分けられていました。
正孔に質量があるっていうことが概念的に理解できないんですが・・・。
正孔って電子の抜け殻(?)ですよね。だから実際には存在しない物のはずなのに
とおもったりしています。

A 回答 (2件)

これは、正孔そのものに質量があるのではありません。


あくまでも正孔がもつ、見かけ上の質量です。

正孔=電子の抜穴ですが、たとえば、電圧を印画することで、周囲の電子を移動させ、見かけ上、この正孔を移動させることができます。エネルギーを与えて正孔を動かすわけですが、実際は電子を動かすわけですから、当然のことながら、「正孔の動きにくさ』というものが存在します。これが見かけ上の質量です。

参考URL:http://www.tuat.ac.jp/~katsuaki/z2000-8.html
    • good
    • 0
この回答へのお礼

なるほど!って感じでした。ありがとうございます。
実際には電子の動きってことは、正孔の質量は電子より重いんですね?

お礼日時:2002/03/04 12:55

正孔というのは,上に凸のバンド(横軸は波数 k,縦軸はエネルギーε)で,


電子が抜けたところを言います.
takamako1 さんの言われるとおりです.

自由電子ですと,
(1)  ε(k) = (h/2π)^2 k^2 / 2m
で,1/2m がバンドの曲率と関係します.

正孔ですと,バンドの形は上に凸で,
しかもεが完全にkの2次関数というわけではありませんが,
少なくともバンドの頂点付近では2次関数で近似できます.
このときのバンドの曲率は
(2)  d^2 ε/ dk^2
で与えられます.もちろん頂点なんだから dε/dk = 0 です.
これと(1)の式との類推から
(3)  m* = (h/2π)^2 / |d^2 ε/dk^2|
と書いて,これを有効質量(efffective mass)と呼んでいます.
(1)を用いて(3)を計算すると,まさにmが出てくることに注意してください.

正孔をもたらすバンドは1つとは限りません.
違うバンドから正孔が2種類出てくれば,バンドの形の違いから m* は当然異なります.
重い正孔,軽い正孔というのはそういうことです.

また,上の話は簡単のため1次元にしてしまいましたが,
実際の物質は3次元なのでもう少し事情は複雑です.
固体中ですから,方向によっていろいろ違いも出ます.

有効質量の重要性は,例えば磁場をかけたりしたとき,
正孔あるいは電子があたかも m* の質量をもつ自由電子であるように振る舞う,
ということです.
したがって,サイクロトロン共鳴などで m* がわかり,
それからフェルミ面の形が推定できたりします.

バンド構造と有効質量については,例えばキッテルの「固体物理学入門」などを
ご覧下さい.
    • good
    • 0
この回答へのお礼

ありがとうございました。ちょっと難しいですが、
頑張って理解してみます.

お礼日時:2002/03/04 12:53

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q正孔の有効質量とは

半導体の教科書に正孔の有効質量と出てきました
正孔は電子がない状態を表すので質量は0ではないのですか?
わかりません

それと、具体的なその値も教えていただければ
うれしいです

Aベストアンサー

有効質量は、ほんとの質量とは全く別物です。
正孔だけではなくて、電子の有効質量も、電子の本当の質量とは、ほとんど関係ないです。

もし、電子が真空中に1個だけ、あって、そこに電界をかければ、ニュートンの古典力学では、
F=qE = ma (q:電子の電荷、m:電子の質量、a:加速度)
という運動方程式になります。

ところで、半導体では、結晶を考えています。
結晶っていうのは、原子が周期的にたくさん並んでいるものです。
この結晶に電界Eをかけたとすると、結晶中の電子(伝導電子)は、電界Eによる力ももちろん受けますが、それだけではなくて、結晶中の電子は、周期的に並んでいる原子核から力(本当は量子力学を考えているので、「力」という言葉を使うのはかなり語弊があるのですが)からも力を受けています。しかも、結晶ですから、原子核は近いのから遠いのまで大量にあります。
なんで、結晶中の電子の運動は、実際には、上に書いたような簡単な式では表わすことができません。

な、はずなんですが、実は、うまいこと近似をすると、結晶の原子核たちから受けている力をすべて忘れてしまって、その代わりに、電子の質量がmではなくて、m'になったと思ったような式
F = qE = m'a
で、結晶中の伝導電子の動きが(近似的にですが)記述できてしまうということがわかったんです。本当は、結晶中のすべての原子を考えて、さらに量子力学を考えなければ、結晶中の伝導電子の動きは記述できないはずなのに、実は、それが、古典力学の式で、質量の値を有効質量というものに取り替えると、近似的には、電子が真空中に1個あるのと同じように扱えてしまう、ということです。これを、準古典力学表示 と言っています。
この有効質量というのは、電子の質量というよりは、むしろ、結晶を構成する原子や、結晶の構造によって決まっています。

で、正孔の有効質量ですが、これも、質量となってますが、本当の質量とはほとんど関係ないです。正孔は、本当は電子が抜けた穴なわけですが、その電子の抜けた穴がどう動いていくかを量子力学をつかってきちんと記述するかわりに、ある有効質量をもった+電荷を持つ正孔という粒子が真空中に1個あると思って、古典力学の式を立てると、たまたま、うまくいってしまうんです。

ただし、この準古典力学は、あくまで近似なんで、本当は正しくありません。正確に言えば、ポテンシャル関数の極値の周りでしか成り立ちません。なんですが、半導体では、普通、価電子帯の中で一番エネルギーが高い電子(ポテンシャル関数が極大値を取るところ)と、伝導帯の中で一番エネルギーが低い電子(ポテンシャル関数が極小値を取るところ)、にしか興味がないことが多いので、たいていうまく行ってしまいます。

有効質量は、ほんとの質量とは全く別物です。
正孔だけではなくて、電子の有効質量も、電子の本当の質量とは、ほとんど関係ないです。

もし、電子が真空中に1個だけ、あって、そこに電界をかければ、ニュートンの古典力学では、
F=qE = ma (q:電子の電荷、m:電子の質量、a:加速度)
という運動方程式になります。

ところで、半導体では、結晶を考えています。
結晶っていうのは、原子が周期的にたくさん並んでいるものです。
この結晶に電界Eをかけたとすると、結晶中の電子(伝導電子)は、電...続きを読む

Q有効質量について教えてください。

「有効質量」は「質量」とどう違うのでしょうか?

また、「有効」の意味は何なのでしょうか?

Aベストアンサー

siegmund です.

半導体では,電子の波動関数がブロッホ関数になっていて,
エネルギーεと波数 k の関係ε(k)が自由粒子の時とは違います.
自由粒子なら
(1)  ε0(k) = (h/2π)^2 k^2 / 2m
です.
h はプランク定数,m は電子の質量.
で,(1)から
(2)  1/m = (2π/h)^2 {d^2 ε0(k) / dk^2}
ですね.
これを半導体中の電子にも適用して
(3)  1/m* = (2π/h)^2 {d^2 ε(k) / dk^2}
で有効質量 m* を定義しています.

もちろん,他のやりかたでもεと m を結びつけることはできるわけですが,
運動方程式など作ってみると,(2)の定義が妥当であることを示すことができます.
詳細は後述の参考書などごご覧下さい.

一般には,半導体のバンドは異方的なので
(4)  (1/m*)μν = (2π/h)^2 {d^2 ε(k) / dkμ dkν}
で有効質量が定義され,テンソル量になっています.
μ,ν = x,y,z です.

特定の電子の速度などが測定できるわけではありませんから,
運動方程式から直接有効質量を測定しようというのは無理です.
半導体中電子の有効質量を測定する手段として有名なのは,
サイクロトロン共鳴,ド・ハース‐ファン・アルフェン効果などが有名です.

有効質量の考え方はバンド構造と共に半導体の基本ですから,
マスターされるようにおすすめします.
今,手元には半導体の専門書が見あたりませんが,
キッテルの「固体物理学入門」にはある程度記述があります.

siegmund です.

半導体では,電子の波動関数がブロッホ関数になっていて,
エネルギーεと波数 k の関係ε(k)が自由粒子の時とは違います.
自由粒子なら
(1)  ε0(k) = (h/2π)^2 k^2 / 2m
です.
h はプランク定数,m は電子の質量.
で,(1)から
(2)  1/m = (2π/h)^2 {d^2 ε0(k) / dk^2}
ですね.
これを半導体中の電子にも適用して
(3)  1/m* = (2π/h)^2 {d^2 ε(k) / dk^2}
で有効質量 m* を定義しています.

もちろん,他のやりかたでもεと m を結びつけることはできるわけですが,
運...続きを読む

Q電子と正孔の有効質量について

正孔と電子を比べると、前者のほうが有効質量は重いわけで、
移動度∝緩和時間/有効質量
の式から、通常、正孔のほうが移動度が小さくなります。
緩和時間は不純物やフォノンとの散乱を考えるわけですが、
重い正孔のほうがフォノンと散乱しやすいということはあるのでしょうか?
あるのだとすると、どうしてそうなるのでしょうか?
ご教示、どうぞよろしくお願いいたします。

Aベストアンサー

私は難しい問題だと思います。
単純に重いホールor軽いホールのどちらかのほうがフォノン散乱を
受けやすいと結論することは出来ないと思います。
しいて言うなら、私は軽いホールの方が散乱確率が増すのではないかと
考えます。(あくまで私が考えた結果で、参考意見です)
間違っているかもしれませんが、議論の助けになれば幸いです。

まず飽和速度が関係するような高電界域ではなくて、
ドリフト速度と印加電界が比例する低電界域を前提にします。(Vdrift=mobility x 電界 が成り立つ領域)
このときフォノン散乱の主因は音響フォノンです。
音響フォノン密度は高エネルギーの方が高密度となります。
つまり高い運動エネルギーを持ったキャリアのほうがフォノン散乱を受けやすいことになります。
軽いホールと重いホールのどちらの方が高い運動エネルギーに達しやすいかを
考えると、軽いホールの方が散乱を受ける前に短時間で高エネルギーに達すると思います。
このため軽いホールの方が音響フォノンを吐き出し緩和する可能性が高いように思えます。
どちらが散乱されやすいかというのは単純に有効質量だけで議論できず、私は複雑だと思います。

私は難しい問題だと思います。
単純に重いホールor軽いホールのどちらかのほうがフォノン散乱を
受けやすいと結論することは出来ないと思います。
しいて言うなら、私は軽いホールの方が散乱確率が増すのではないかと
考えます。(あくまで私が考えた結果で、参考意見です)
間違っているかもしれませんが、議論の助けになれば幸いです。

まず飽和速度が関係するような高電界域ではなくて、
ドリフト速度と印加電界が比例する低電界域を前提にします。(Vdrift=mobility x 電界 が成り立つ領域)
このと...続きを読む

Q有効質量テンソル

有効質量テンソルってどうゆうものですか??
文献があまりなく、困っています。
詳しく教えていただければありがたいです!!
お願いします!!

Aベストアンサー

>有効質量テンソルってどうゆうものですか??
文献があまりなく、困っています。

キッテルの固体物理学入門の「エネルギーバンド」の章をご覧になってください。概略を言えば次のようなイメージになると思いますが。。。結晶中の電子は周期的ポテンシャルの影響下にあり,この結果,外部から磁場や電場が加わった場合,電子は自由電子の質量mと異なる質量m*を持つかのようように振舞います。このm*を有効質量と呼んでいます。また,結晶が異方性を持つ場合,それが周期ポテンシャルの姿に反映されその結果有効質量はスカラーでもなくベクトルでもないテンソル量となります。これを有効質量テンソルと呼んでいます。

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

QP型半導体のキャリア移動度??

N型のキャリア移動度がどうしてP型半導体のキャリア移動度
よりおおきいのでしょう?
バンドギャップの違いからなのでしょうか?
御教えいただけると幸いです。

Aベストアンサー

こんばんは。
半導体デバイス・プロセスの技術開発業務経験者です。

「N型のキャリア移動度がどうしてP型半導体のキャリア移動度よりおおきいのでしょう?」
というよりは、
「P型のキャリア移動度がどうしてN型半導体のキャリア移動度より小さいのでしょう?」
という話になります。


N型半導体のキャリアは、文字通り電子ですが、
P型半導体のキャリアである「ホール」(正孔)は、おとぎ話の登場人物です。
実際に動くのは、ホールではなく、あくまでも電子です。
したがって、N型半導体とP型半導体を対称に考えることなど、そもそもできないのです。


15パズルって、やったことないですか?
http://weblogjapan.com/img_d/2007/05/23/3.jpg
15個の板を電子、1箇所空いているところをホールだと思ってください。
狙ったところまで「ホール」(空き)を移動させるには、周りの電子(板)を色々と動かさないといけません。
それがP型半導体です。


N型半導体は、15パズルの板と空きを反転させたもの、すなわち、板が1枚だけで、空いたところが15箇所あるパズルです。
狙ったところまで電子を移動させるのは、いとも簡単なことです。

そういうわけで、ホールの移動度は電子の移動度より小さくなっているのです。


以上、ご参考になりましたら。

こんばんは。
半導体デバイス・プロセスの技術開発業務経験者です。

「N型のキャリア移動度がどうしてP型半導体のキャリア移動度よりおおきいのでしょう?」
というよりは、
「P型のキャリア移動度がどうしてN型半導体のキャリア移動度より小さいのでしょう?」
という話になります。


N型半導体のキャリアは、文字通り電子ですが、
P型半導体のキャリアである「ホール」(正孔)は、おとぎ話の登場人物です。
実際に動くのは、ホールではなく、あくまでも電子です。
したがって、N型半導体と...続きを読む

Q半導体の縮退って?

半導体の参考書など読んでいるとよく、「縮退」という言葉が出てきます。しかも、どうやらいろいろなケースで使われているようですが、いまいちよくわかりません。

例えば、
・フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
・スピンが上下二種類埋まっているとき。

に関しては分かったのですが、縮退の一般的意味と共に、他のケースについて、どういったときに縮退というのか具体的に教えていただけませんか?
よろしくお願いします。

Aベストアンサー

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子統計で扱わないといけない(低温)ときを「縮退している」といいます.
低温かどうかは考えている系のもつ特徴的なエネルギー(例えば,フェルミエネルギー)
を温度に換算したもの(フェルミ温度 T_F)との関連で決まります.
T << T_F なら縮退しています.
縮退ならフェルミ分布関数の分母にある1を無視できないし,
非縮退なら無視してよい(ボルツマン分布になる)というわけです.
sunny_day さんの
> フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
は確かにそのとおりですが,これは縮退のもともとの定義ではありません.
フェルミ準位の位置の結果,そうなっているということです.
なお,フェルミ準位が禁制帯内にあっても,バンド端とのエネルギー差によっては
縮退していることもありえます.

(3) 分子遺伝学でも縮退という用語があります.
1種類のアミノ酸に対応し複数の遺伝子コドンが存在するときにこのように言うようです.
ここら辺は素人なのであまり自信がありません.

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子...続きを読む

Q真性キャリア密度niの計算に関して

半導体工学のテキストに載っている真性キャリア密度の計算ですが
下式が有名ですが、この式と下記のパラメータを使って計算をすると、テキストに書いてある値(1.5×10^10 /cm^3または、1.45×10^10 /cm^3)と違っています。

式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)
ni=√(2.8×10^19×1.02×10^19)×exp(-1.12×1.6×10^-19/2×1.38×10^-23×300)

パラメータ
Nc=2.8×10^19
Nv=1.02×10^19
q=1.6×10^-19
Eg=1.12
k=1.38×10^-23
T=300

計算過程は間違いないと思いますが、1.5×10^10 /cm^3または、1.45×10^10 /cm^3の値になりますでしょうか?

Aベストアンサー

昨日から、誰か回答してくれないかなぁと待っていましたが、なかなか現れないので、私が書くことにしました。
しかし、ずいぶん昔のことなので、自信がありませんので、違っているかもしれません。
たぶん次のところではないかと思うんですが。

>式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)

上式は、PN積のni^2が一定となると言うことから、平方根をとっているのではないかと推測します。
この式のNcとNvがありますが、これは伝導帯中の電子の密度と価電子帯中のホール密度の定数部分ですよね。

ですが、
>テキストに書いてある値(1.5×10^10 /cm^3または、1.45×10^10 /cm^3)

この値は、伝道帯中の自由電子密度だけの値ではないでしょうか?
そう考えて、計算してみると、質問にあるパラメーターを用いて計算しても、1.5×10^10 /cm^3程度の値になります。

計算式は、
ni=Nc×exp(-Eg*q/2*kT)
です。

蛇足ですが、常温(T=300[K])のときのkTの値は、[eV]で表すと、約0.026[eV]となりますので、大雑把に計算するときはこの方が便利です。
ni=Nc×exp(-Eg/2*0.026)

昨日から、誰か回答してくれないかなぁと待っていましたが、なかなか現れないので、私が書くことにしました。
しかし、ずいぶん昔のことなので、自信がありませんので、違っているかもしれません。
たぶん次のところではないかと思うんですが。

>式 ni=√(Nc*Nv)*exp(-Eg*q/2kT)

上式は、PN積のni^2が一定となると言うことから、平方根をとっているのではないかと推測します。
この式のNcとNvがありますが、これは伝導帯中の電子の密度と価電子帯中のホール密度の定数部分ですよね。

ですが、
>テキ...続きを読む

Qキャリアの移動度と温度依存性について

キャリア密度は温度依存性がある理由は分かったのですが、なぜ移動度にも温度依存性があるのか分かりません。

どなたか回答お願いします。

Aベストアンサー

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げられてしまいます。不純物密度が高いほど移動度は小さくなっていきます。しかし、温度が上昇すると、速度の大きいキャリアは、すり抜け、平均速度は大きくなるため、偏向の割合が少なくなるので、移動度は増加していきます。
逆に言えば、キャリア密度が小さいときに、温度が高くなると移動度の減少の割合は大きくなります。

密度と温度の両方が関係してきますので、説明が分かりにくいかもしれません。

最後に中性の不純物によってもキャリアの散乱は受けますが、この場合の移動度は温度にはよらないことが示されています。

散乱機構と移動度の関係式

格子振動∝m*^(-2/5)・T^(-3/2)
イオン化不純物∝m*^(-1/2)T^(3/2)
中性不純物∝m*

m*:有効質量
T:絶対温度

移動度と温度の関係は、キャリアの散乱機構によって異なります。
散乱機構には3種類あり、
高温では、結晶格子の熱振動によるものです。
結晶格子の熱振動が激しくなると、電子波が散乱されて移動度が下がります。温度が高かくなるほど熱振動の振幅が大きくなるので、移動度は小さくなっていきます。

低温では、格子振動は弱まりますが、イオン化不純物による散乱が起こってくるようになります。簡単に言えば、イオン化した不純物の近くをキャリアが通過しようとすると、クーロン力によりキャリアの軌道が曲げら...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング