アレルギー対策、自宅でできる効果的な方法とは?

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

このQ&Aに関連する最新のQ&A

アンサープラス

下記Microsoftオフィシャルサイトにて、解説や使用例がありますので、参考になるでしょう。



【STDEV 関数 - Office のサポート】
https://support.office.com/ja-jp/article/STDEV-% …

【STDEVP 関数 - Office のサポート】
https://support.office.com/ja-jp/article/STDEVP- …

A 回答 (2件)

データが母集団そのものからとったか、標本データかで違います。

また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。
    • good
    • 55
この回答へのお礼

ありがとうございます。

お礼日時:2006/10/29 22:26

この2つの違いは確か


関数に与えるデータの性質に違いがあるとしています

生産を例にして考えると
片方は生産物全部のデータ
他方は全体から1部を抜き出して得たデータです

処理の違いまでは判らないですが観念的にはこんな戸頃です
    • good
    • 25
この回答へのお礼

ありがとうございます。

お礼日時:2006/10/29 22:25

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q標準偏差について

エクセルで、標準偏差の式は4種類あり
(STDEV、STDEVA 、STDEVP、STDEVPA)
違いがよくわかりません。
はじめの2つは分母が(n-1)、あとの2つは分母がn
となっています。

高校の数学で習ったときは、分母はnだったと思います。
この違いはなんですか?

(2つずつ同じ数式ですが、Aがあるのと無いのでは何が
 違うかわかりますか?)

エクセルのヘルプでは、下記のように書いてあります。

STDEV 引数を正規母集団の標本と見なし、標本に基づいて母集団の標準偏差の推定値を返します。

STDEVA 数値、文字列、および論理値を含む引数を正規母集団の標本と見なし、母集団の標準偏差の推定値を返します。

STDEVP 引数を母集団全体と見なし、母集団の標準偏差を返します。

STDEVPA 数値、文字列、および論理値を含む引数を母集団全体と見なし、母集団の標準偏差を返します。

Aベストアンサー

標準偏差そのものを求める計算は、質問者さんが言われるとおり、分母をnとするのが正しいです(実際は、分散を計算するときにnで割るのであって、標準偏差は(√分散)ですね)。

ですから、例えば、

部品を10万個作った。これら部品の寸法の平均および標準偏差を調べたい。

と言う場合は、暇な人がいれば、とにかく10万個の部品の寸法を全部測定して、全部の測定値から平均と分散、標準偏差を計算する。このとき、平均も分散も10万で割る。こうして求められた値は、とりもなおさず母集団の平均と分散であり、標準偏差はSTDEVPで計算するべき。

ところが、大抵の場合、10万個の部品全部の寸法を調べようなんて暇な人はいないわけで、10万個作ったうちの100個を無作為に抜き出して測定して、その100個の測定値の平均値や標準偏差を求めようとする。このように、母集団(10万個)から100個抜き出した標本の平均を計算するときには100で割り、標本の分散そのものを計算するときも100で割る。こうして求めた標本の平均や分散は、母集団のそれと区別して、標本平均とか標本分散と呼ばれるのですが、標本の標準偏差そのものを求めるときもSTDEVPを使って計算して良い(と思う)。
ところが、100個抜き出して検査を行った元々の目的は、母集団の平均や標準偏差を「推定しましょう」ということであって、標本平均や標本分散を求めれば良いというほど実は単純ではない。抜き取り検査をして、標本平均と標本分散を求め、標本を母集団にもどしてまた抜き取り検査をする。これを何度も何度も繰り返す。このとき、繰り返し求められた標本平均の平均がどうなるか、標本分散の平均がどうなるかを調べてみると、標本平均の平均は、どうやら母集団の平均値(強いていうなら真値ですね)に近づくのだけど、ちょっと不思議なことに、標本分散の平均は母集団の分散に近づいてくれない。ということで、標本分散をもってして母集団の分散の推定量とするのはどうも怪しい。

推定量の平均が母集団の母数(平均とか分散)になるとき、その推定量を不偏推定量といいますが、上で述べたように標本平均は不偏推定量なんだけれど、標本分散は不偏推定量ではない。そこで編み出されたのが、標本から分散の推定量を計算するときにnで割るのではなく(n-1)で割る方法で、こいつが分散の不偏推定量になっているため不偏分散と呼んばれたりする。で、(√不偏分散)を計算してくれるのがSTDEV。

ということで、
STDEVPは母集団または標本(を母集団と見なして)の標準偏差を計算してくれる。
一方、STDEVは標本の(√不偏分散)を計算してくれるが、これは「標本の標準偏差」ではなく、「母集団の標準偏差の推定値」である。

じゃあ、母集団の標準偏差の推定値はSTDEVで計算しないと誤りなのか、と言われると、それがまたややこしい。不偏推定量というのは、その期待値が母集団と一致するという点では一応確からしいわけなんだけど、そのほかにも推定量としての確からしさを見積もる方法はいろいろとあって、(n-1)で割る不偏分散が必ずしも一番確からしいとは言えないと思う。最尤推定量っていうのもあるのだけど、不偏分散は最尤推定量ではなく、標本分散の方が最尤推定量だったりもする。

まあ、現実問題としてはnが適当に大きければ標本分散と不偏分散の違いは問題にならない場合が多いのであまり気にした事はありませんし、それが気になるような場合は、他に問題がある場合の方が多いので、どっちでもいーよなーと大雑把な私はいつも思ってる。

標準偏差そのものを求める計算は、質問者さんが言われるとおり、分母をnとするのが正しいです(実際は、分散を計算するときにnで割るのであって、標準偏差は(√分散)ですね)。

ですから、例えば、

部品を10万個作った。これら部品の寸法の平均および標準偏差を調べたい。

と言う場合は、暇な人がいれば、とにかく10万個の部品の寸法を全部測定して、全部の測定値から平均と分散、標準偏差を計算する。このとき、平均も分散も10万で割る。こうして求められた値は、とりもなおさず母集団の平均と...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

QExcelでCVを計算するには

Excelを使ってCV(変動係数)を計算するにはどうすればいいのでしょうか。

Aベストアンサー

CV(変動係数)=標準偏差/平均

今、範囲(A1:Z1)にデータがあるとして


標準偏差=STDEVP(A1:Z1)

平均値=AVERAGE(A1:Z1)

従って CV=STDEVP(A1:Z1)/AVERAGE(A1:Z1)

で如何でしょう?

標準偏差に不偏標準偏差を使う場合はSTDEV(A1:Z1)にしてください。

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qエクセル 0や空白のセルをグラフに反映させない方法

以下の点でどなたかお教えください。

H18.1~H20.12までの毎月の売上高を表に記載し、その表を元にグラフを作成しています。グラフに反映させる表の範囲はH18.1~H20.12の全てです。
そのためまだ経過していない期間のセルが空白になり、そこがグラフに反映され見づらくなります。
データを入力する都度グラフの範囲を変更すればいいのですが、うまく算式や設定等で空白や0円となっているセルをグラフに反映させない方法はありますか?

お手数ですが、よろしくお願いいたします。

Aベストアンサー

売上高のセルは数式で求められているのですよね?
それなら
=IF(現在の数式=0,NA(),現在の数式)
としてみてください。
つまり、0の場合はN/Aエラーにしてしまうんです。N/Aエラーはグラフに反映されません。

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Qエクセルのグラフ;各々のポイントに異なった標準偏差の入れ方

上手く説明できないのですが、、、。教えて下さい。

エクセルの折れ線グラフに標準偏差の値を入れ込む方法は判るのですが、一つの値を入れ込むと、すべてのポイントに反映されてしまいます。各ポイントで、違った値の標準偏差を入れたいのですが、どうすればよいでしょうか?
宜しくお願いいたします。

Aベストアンサー

先ず、例えば、A列に折れ線グラフ用の数値を入れます。B列に、標準偏差とする数値をA列の数値の横に入れます。
次に、折れ線グラフを設定します。
さらに、「データ系列の書式設定」 → 「Y誤差範囲」 → 「誤差範囲」 → 「指定」でB列を設定します。
これで、各ポイントに違った値の標準偏差を入れることが可能になります。
なお、これは各ポイントと標準偏差の値だけでグラフを作成する一例です。

Q標準偏差について詳しい方お願いします

お世話になります。
標準偏差は平均からのばらつき・・とききますが、「標準偏差が大きい」「小さい」という、その目安がわかりません。

たとえば、50人の集団で平均年齢30歳、標準偏差1.2だったらどうでしょうか?

また、平均年齢が同じぐらいでも、標準偏差が1.0と10.0と違う2つの集団についていろんなデータを比べると、何か問題がありますか?

どちらかでもいいので、わかるかたがいましたらおねがいいたします。

Aベストアンサー

とりあえず、「標準偏差」の定義はURLを読んでいただくとして。

標準偏差は「分散」の平方根ですから、その集団の標準偏差が大きい
ということは、その集団のデータのばらつきが大きいということです。

とりあえず、以下の話は母集団が正規分布をするという仮定で行います。

仮に平均年齢が同じ30歳で、標準偏差が1の集団の場合、その集団には
28歳~32歳の人しかいない(95%程度の確率でその中にデータがある)
ということですし、標準偏差が10ならば35歳の人も結構フツーにその
中にいる(同じ確率では10~50歳になります)ということです。

逆に、例えばテストの点などを考えますと、同じ60点でも平均65点、
標準偏差5、の場合と平均70点、標準偏差10の場合では、どれだけ
違うか直接には比較出来ません。これらを「平均50、標準偏差10」
に換算して比較するのが「偏差値」の考え方です。
(上記の場合、どちらも同じ偏差値40になります)

ということで標準偏差は、ばらつきの度合いを平均値と同時にチェック
する時に使う値です。標準偏差の違う集団を直接に比較するかどうかは
その母集団の性質によって違いますよ。

参考URL:http://ja.wikipedia.org/wiki/%E6%A8%99%E6%BA%96%E5%81%8F%E5%B7%AE

とりあえず、「標準偏差」の定義はURLを読んでいただくとして。

標準偏差は「分散」の平方根ですから、その集団の標準偏差が大きい
ということは、その集団のデータのばらつきが大きいということです。

とりあえず、以下の話は母集団が正規分布をするという仮定で行います。

仮に平均年齢が同じ30歳で、標準偏差が1の集団の場合、その集団には
28歳~32歳の人しかいない(95%程度の確率でその中にデータがある)
ということですし、標準偏差が10ならば35歳の人も結構フツーにその
中にいる(同じ確率...続きを読む

Qエクセルでの複数条件下での標準偏差の求め方

教えてください。エクセル2007を使用しています。僕はエクセル初心者ではありませんが、玄人でもない中級者くらいだと思います。早速ですが、例えばA列に男か女かの性別、B列に日本、アメリカなどの国籍、C列に東京、フロリダなどの州、県、D列に右利きか左効きか、E列に年齢が書いてある表において、「男、日本、埼玉、右利き」の人の「年齢」の「標準偏差(STDEV)」を求めようとしたとき、計算する方法がわかりません。ソートをかけて求める方法も考えましたが、内容や位置がコロコロ変わるため、向いていないと思ってます。平均値ならAVERAGEIFSで出せますし、合計ならSUMIFSがあると思います。1つの条件(たとえば、「日本」の「年齢」の標準偏差)ならば、なんとかできますが、このような場合の関数はあるのでしょうか?もしなければ、どのように算出するのか教えて頂ければありがたいです。よろしくお願いいたします。

Aベストアンサー

方法1:
=STDEV(IF((A1:A100="男")*(B1:B100="日本")*(C1:C100="東京")*(D1:D100="左"),E1:E100))
と数式バーに記入して,コントロールキーとシフトキーを押しながらEnterで入力します


方法2:
STDEVの基本式
=SQRT((N*Σ(x^2)-(Σx)^2)/(N*(N-1)))
で計算します(関数のヘルプを参照の事)

NはCOUNTIFS関数,ΣxはSUMIFS関数で計算できますが,Σ(x^2)については
=SUMPRODUCT((A1:A100="男")*(B1:B100="日本")*(C1:C100="東京")*(D1:D100="左"),E1:E100,E1:E100)
といった具合に求める必要があります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報