エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

このQ&Aに関連する最新のQ&A

アンサープラス

下記Microsoftオフィシャルサイトにて、解説や使用例がありますので、参考になるでしょう。



【STDEV 関数 - Office のサポート】
https://support.office.com/ja-jp/article/STDEV-% …

【STDEVP 関数 - Office のサポート】
https://support.office.com/ja-jp/article/STDEVP- …

A 回答 (2件)

データが母集団そのものからとったか、標本データかで違います。

また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。
    • good
    • 51
この回答へのお礼

ありがとうございます。

お礼日時:2006/10/29 22:26

この2つの違いは確か


関数に与えるデータの性質に違いがあるとしています

生産を例にして考えると
片方は生産物全部のデータ
他方は全体から1部を抜き出して得たデータです

処理の違いまでは判らないですが観念的にはこんな戸頃です
    • good
    • 23
この回答へのお礼

ありがとうございます。

お礼日時:2006/10/29 22:25

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q累積密度関数の平均値と標準偏差の求め方

累積密度関数の平均値と標準偏差の求め方

ある累積密度関数の平均値と標準偏差でもとめた値(X、Y)が20個ほどあります。
この値から平均値と標準偏差を求めるにはどうしたら良いでしょうか。

単純な式なら連立方程式で解けるとは思いますが。。。
できればエクセル等でできたら嬉しいです。

よろしくお願いします。

Aベストアンサー

ようやく、何がしたいのかが見えてきた(ような気がする)。
改めて、尋常な言葉へ翻訳を試みよう。

画像のような関数 P(I) の値が、I, P(I) の対で 20 組与えられている。
この値から、λ と ζ を求めるにはどうしたら良いか。


P(I) が正規分布の累積分布関数であることや、
λ と ζ がその平均と標準偏差であることは、
問題の内容にはあまり関係がない。

連立方程式として解くなら、具体的な手技はともかく、原理的には、
データは 2 組で足りるはず。20 組もあると、データが過剰なために、
全ての組が誤差なく I, P(I) の対になっている訳ではないことが
露わになってしまう。

してみると、与えられた 20 組の I, P(I) に対して、
誤差が最小になるような λ と ζ を求める問題であるらしい。
「曲線の当てはめ」ってやつだ。
No.2 補足は、前半を無視して、下の2行を読めばよかったのか。

この問題を解くためには、曲線を当てはめる際に
何を「誤差」と定義して、それを最小化する λ と ζ を求めるのか、
要するに、どのような意味で最適な曲線を当てはめたいのか
…を確認して明記する必要がある。
それをして初めて、問題が定義されたことになる。

ようやく、何がしたいのかが見えてきた(ような気がする)。
改めて、尋常な言葉へ翻訳を試みよう。

画像のような関数 P(I) の値が、I, P(I) の対で 20 組与えられている。
この値から、λ と ζ を求めるにはどうしたら良いか。


P(I) が正規分布の累積分布関数であることや、
λ と ζ がその平均と標準偏差であることは、
問題の内容にはあまり関係がない。

連立方程式として解くなら、具体的な手技はともかく、原理的には、
データは 2 組で足りるはず。20 組もあると、データが過剰なために、
全ての組が誤差な...続きを読む

Q標準偏差について

エクセルで、標準偏差の式は4種類あり
(STDEV、STDEVA 、STDEVP、STDEVPA)
違いがよくわかりません。
はじめの2つは分母が(n-1)、あとの2つは分母がn
となっています。

高校の数学で習ったときは、分母はnだったと思います。
この違いはなんですか?

(2つずつ同じ数式ですが、Aがあるのと無いのでは何が
 違うかわかりますか?)

エクセルのヘルプでは、下記のように書いてあります。

STDEV 引数を正規母集団の標本と見なし、標本に基づいて母集団の標準偏差の推定値を返します。

STDEVA 数値、文字列、および論理値を含む引数を正規母集団の標本と見なし、母集団の標準偏差の推定値を返します。

STDEVP 引数を母集団全体と見なし、母集団の標準偏差を返します。

STDEVPA 数値、文字列、および論理値を含む引数を母集団全体と見なし、母集団の標準偏差を返します。

Aベストアンサー

標準偏差そのものを求める計算は、質問者さんが言われるとおり、分母をnとするのが正しいです(実際は、分散を計算するときにnで割るのであって、標準偏差は(√分散)ですね)。

ですから、例えば、

部品を10万個作った。これら部品の寸法の平均および標準偏差を調べたい。

と言う場合は、暇な人がいれば、とにかく10万個の部品の寸法を全部測定して、全部の測定値から平均と分散、標準偏差を計算する。このとき、平均も分散も10万で割る。こうして求められた値は、とりもなおさず母集団の平均と分散であり、標準偏差はSTDEVPで計算するべき。

ところが、大抵の場合、10万個の部品全部の寸法を調べようなんて暇な人はいないわけで、10万個作ったうちの100個を無作為に抜き出して測定して、その100個の測定値の平均値や標準偏差を求めようとする。このように、母集団(10万個)から100個抜き出した標本の平均を計算するときには100で割り、標本の分散そのものを計算するときも100で割る。こうして求めた標本の平均や分散は、母集団のそれと区別して、標本平均とか標本分散と呼ばれるのですが、標本の標準偏差そのものを求めるときもSTDEVPを使って計算して良い(と思う)。
ところが、100個抜き出して検査を行った元々の目的は、母集団の平均や標準偏差を「推定しましょう」ということであって、標本平均や標本分散を求めれば良いというほど実は単純ではない。抜き取り検査をして、標本平均と標本分散を求め、標本を母集団にもどしてまた抜き取り検査をする。これを何度も何度も繰り返す。このとき、繰り返し求められた標本平均の平均がどうなるか、標本分散の平均がどうなるかを調べてみると、標本平均の平均は、どうやら母集団の平均値(強いていうなら真値ですね)に近づくのだけど、ちょっと不思議なことに、標本分散の平均は母集団の分散に近づいてくれない。ということで、標本分散をもってして母集団の分散の推定量とするのはどうも怪しい。

推定量の平均が母集団の母数(平均とか分散)になるとき、その推定量を不偏推定量といいますが、上で述べたように標本平均は不偏推定量なんだけれど、標本分散は不偏推定量ではない。そこで編み出されたのが、標本から分散の推定量を計算するときにnで割るのではなく(n-1)で割る方法で、こいつが分散の不偏推定量になっているため不偏分散と呼んばれたりする。で、(√不偏分散)を計算してくれるのがSTDEV。

ということで、
STDEVPは母集団または標本(を母集団と見なして)の標準偏差を計算してくれる。
一方、STDEVは標本の(√不偏分散)を計算してくれるが、これは「標本の標準偏差」ではなく、「母集団の標準偏差の推定値」である。

じゃあ、母集団の標準偏差の推定値はSTDEVで計算しないと誤りなのか、と言われると、それがまたややこしい。不偏推定量というのは、その期待値が母集団と一致するという点では一応確からしいわけなんだけど、そのほかにも推定量としての確からしさを見積もる方法はいろいろとあって、(n-1)で割る不偏分散が必ずしも一番確からしいとは言えないと思う。最尤推定量っていうのもあるのだけど、不偏分散は最尤推定量ではなく、標本分散の方が最尤推定量だったりもする。

まあ、現実問題としてはnが適当に大きければ標本分散と不偏分散の違いは問題にならない場合が多いのであまり気にした事はありませんし、それが気になるような場合は、他に問題がある場合の方が多いので、どっちでもいーよなーと大雑把な私はいつも思ってる。

標準偏差そのものを求める計算は、質問者さんが言われるとおり、分母をnとするのが正しいです(実際は、分散を計算するときにnで割るのであって、標準偏差は(√分散)ですね)。

ですから、例えば、

部品を10万個作った。これら部品の寸法の平均および標準偏差を調べたい。

と言う場合は、暇な人がいれば、とにかく10万個の部品の寸法を全部測定して、全部の測定値から平均と分散、標準偏差を計算する。このとき、平均も分散も10万で割る。こうして求められた値は、とりもなおさず母集団の平均と...続きを読む

Q関数電卓での幾何平均・幾何標準偏差の求め方。

こんにちは。関数電卓を用いた幾何平均・幾何標準偏差の求め方が全然わかりません。ご存知の方、アドバイスをください。使用電卓はCASIOのfx-912MSです。よろしくお願いします。ちなみに、標準偏差は求められます。

Aベストアンサー

その電卓の使い方を知らないので、
間違っていたらごめんなさい。
幾何平均は
(A1*A2*A3*…*An)^(1/n)
だと思うので、

xy
yがxの肩に掛かっているボタンがあれば計算できます。
例えば、
5,4,3の幾何平均は
(5*4*3)xy(1/3)=
で求められます。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q月次のデータ等から、年率の標準偏差を求めるには…

 株価の値動き等における年間の標準偏差を求めたいのです。
 ただ、1年間の騰落率のデータを使用するのは、計測期間が長くなりすぎるため、あまり意味がないので(高度成長期のデータなども使うことになってしまい、現在の値動きとは異なると思われる)、月次や週次の騰落率を使って標準偏差を求め、それを年率換算するといった方法で求めようと考えています。
 月次のデータから求めた標準偏差を年率換算するには、12^(1/2)倍、つまりルート12倍すれば良いということを聞いたことがあります。これは正しい求め方なのでしょうか。
 また、ルート12倍するということは、標準偏差を2乗して分散にした後、期間(月次の場合は12ヶ月)を掛け算するということじゃないかなぁと勝手に考えているのですが、もしそうだとすると、週次データの標準偏差の場合はルート52倍(1年間=52週のため)すれば良いということでしょうか。
 よろしくご教授願います。

Aベストアンサー

株価がブラウン運動しているという仮定ならそうです。
ただし、その逆、つまり、
「標準偏差を年率換算するには、12^(1/2)倍で求められる」⇒株価はブラウン運動
は一般には成り立ちません。

実際に測定してやると、20分足ぐらいからは1/2乗に比例するようです。

参考文献:経済物理学入門
http://www.economist.co.jp/Finance/EcoPhysics.htm

参考URL:http://www.economist.co.jp/Finance/EcoPhysics.htm

QExcelでCVを計算するには

Excelを使ってCV(変動係数)を計算するにはどうすればいいのでしょうか。

Aベストアンサー

CV(変動係数)=標準偏差/平均

今、範囲(A1:Z1)にデータがあるとして


標準偏差=STDEVP(A1:Z1)

平均値=AVERAGE(A1:Z1)

従って CV=STDEVP(A1:Z1)/AVERAGE(A1:Z1)

で如何でしょう?

標準偏差に不偏標準偏差を使う場合はSTDEV(A1:Z1)にしてください。

Q平均と標準偏差の求め方について

同じパラメーターについて、平均と標準偏差のみわかっているA群とB群の、2群をまとめた平均と標準偏差の求め方が知りたいのですが。

Aベストアンサー

a1,a2,a3,・・・・・amの平均をx
b1,b2,b3,・・・・・bnの平均をy とすると全体の平均は
(mx+ny)/(m+n)
重みつきの平均ですから,データの個数が分からないと正確に出せないのでは?
標準偏差も同様。

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q平均値で求めた標準偏差と最小二乗法で求めた標準偏差

10個のデータの平均値から求めた標準偏差と、グラフを用いた最小二乗法から求めた標準偏差の2パターンで対象の不確かさを求めたのですが、求めた2つの値は大きく異なりました。
この2つの値の違いの原因は何なのでしょうか?
よろしくお願いします。

Aベストアンサー

こういうことですね

レンズの結像公式 1/a + 1/b = 1/f
倍率 m = b/a

b = maなので

1/a + 1/b = 1/a + 1/ma = (1/a)(1+1/m) = 1/f
a = (1+1/m)f = f + f(1/m)

これだけの情報ではなんとも言えませんが,一つ気になるのが

>y = a + bx

と書いたときのaとbが独立ではないので,本来,

a = (1+1/m)f

を元に1+1/mをxとして

y = ax

の形の最小二乗法をやるべきでは?どのくらい影響するのかわかりませんが。

次に,y=a+bxという式の最小二乗法による係数bの誤差Δbは,yの読み取り誤差をΔとして

Δb = √[ n / {Σxi^2 - (Σxi)^2 } ] Δ

「平均値・・・」の方の焦点距離の読み取り誤差もΔ程度であれば,
双方の誤差は

√[ n / {Σxi^2 - (Σxi)^2 } ]

だけ異なる。

それから,単純な間違いの可能性としては,「平均値・・・」のほうが

>標準偏差 = √Σ(焦点距離の残差)^2/n(n-1) 

と,平均値の標準偏差を使っているのに対して,「最小二乗法」で計算しているのが測定値の標準偏差で√nで割っていない。

あとは,一番ありそうなのが,二つの方法で直接測っている物理量が異なるので,その物理量(レンズと焦点の距離,および,像の大きさ?)の読み取り精度(上のΔ)がそもそも大きく違うということでしょうか。

こういうことですね

レンズの結像公式 1/a + 1/b = 1/f
倍率 m = b/a

b = maなので

1/a + 1/b = 1/a + 1/ma = (1/a)(1+1/m) = 1/f
a = (1+1/m)f = f + f(1/m)

これだけの情報ではなんとも言えませんが,一つ気になるのが

>y = a + bx

と書いたときのaとbが独立ではないので,本来,

a = (1+1/m)f

を元に1+1/mをxとして

y = ax

の形の最小二乗法をやるべきでは?どのくらい影響するのかわかりませんが。

次に,y=a+bxという式の最小二乗法による係数bの誤差Δbは,yの読み取り誤差をΔとして

Δb = √[ n ...続きを読む

Qエクセル 0や空白のセルをグラフに反映させない方法

以下の点でどなたかお教えください。

H18.1~H20.12までの毎月の売上高を表に記載し、その表を元にグラフを作成しています。グラフに反映させる表の範囲はH18.1~H20.12の全てです。
そのためまだ経過していない期間のセルが空白になり、そこがグラフに反映され見づらくなります。
データを入力する都度グラフの範囲を変更すればいいのですが、うまく算式や設定等で空白や0円となっているセルをグラフに反映させない方法はありますか?

お手数ですが、よろしくお願いいたします。

Aベストアンサー

売上高のセルは数式で求められているのですよね?
それなら
=IF(現在の数式=0,NA(),現在の数式)
としてみてください。
つまり、0の場合はN/Aエラーにしてしまうんです。N/Aエラーはグラフに反映されません。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報