No.1ベストアンサー
- 回答日時:
厳密には確率解析と呼ばれる学問で、結構難しいので、ごくごく簡単に説明します。
普通のノンランダムな系の時系列を記述するのに微分方程式を用いますが、ランダムな系に対しては確率微分方程式というものを用いて記述します。モデルはこんな感じだろう、あるいは実験のデータからこうなるだろう、ということでモデルを作って確率微分方程式を立てるわけです。そしてそれを解くと、確率過程と呼ばれる解を得ます。通常の微分方程式の場合は、単なる関数が答えとして出てくるので、確率過程はランダムな関数とみなすことが出来ます。そしてその中でよい性質を持つ特別な確率過程たちが存在します。それらには名前がついていて、たとえば、マルコフ過程だったり、マルチンゲール(過程)だったり、拡散過程だったり、ブラウン運動だったりします。これらはもちろん全部がまったく違う確率過程であるというわけではなく、たとえというと、多項式関数、初等関数、二次関数、y=x^2、みなたいな感じになっていたりします。だからどれかがどれかを含んでいたりもするわけです。
拡散過程とはマルコフ過程の特別な場合を指す確率過程で、ブラウン運動とはその拡散過程の非常に特殊な場合を指します。そして拡散過程は、二つのパラメータ、拡散係数とドリフト係数によって特徴付けられます。拡散係数が1、ドリフト係数が0のときをブラウン運動というのでした。簡単のため、1次元で考えてみましょう。そうすると、拡散係数が0、ドリフトが+1だとすると、原点にいた粒子は、毎秒1だけ右に力を受ける、という感じなので、どんどん右に進んでいくイメージです。拡散係数が0でドリフトが-2なら、毎秒2のペースで左に力を受けて、どんどん-∞に近づいていきます。拡散係数が位置や時間の関数で与えられることもあります。そのときは、その位置や時間で、どちら向きに力を受けて粒子が動くのか、ということを考えればよいのです。しかしこれだけでは粒子はランダムな動きをすることはありません。決まった方向に動いてしまいます。そこで拡散係数が登場します。簡単のためドリフトは0だとして、拡散係数が少しあるとしましょう。1次元の場合、拡散係数は必ず正の数になります。0.1ぐらいだと、原点からスタートしてあっちにふらふら、こっちにふらふらしながら、少しずつ原点から離れていきます。たとえば1000になると、ものすごい速さでふらふらするので、あっという間に遠くに行ってしまったりします。ただしどこに行くかは分かりません。拡散とは物体が散乱していく現象、たとえば空気中の1分子や、水の上にある花びらを想像してもらえればよいですが、ランダムに広がっていく(中心から離れていく)ような現象を指しています。運良く戻ってくるかも知れませんが、基本的には遠く離れていきます。その拡散の強さを表すのが拡散係数です。これから容易に想像できると思いますが、たとえば時間の進み方を速くすれば、拡散係数が大きくなったように感じられますし、あるいは粒子を顕微鏡で拡大してみても拡散係数が大きくなったように感じられるでしょう。これら位置の拡大と時間の拡大の間にはスケール則という関連も知られています。
一般の拡散過程は2つの係数を持っているので、それらをあわせたものをイメージすればよい。平均的にはドリフトが正なので、右にどんどん進もうとするのだけれども、拡散係数もあるので、左にいったり、より右にいったりもする、そんなイメージです。
離散で具体例を知りたければ、ランダムウォークを考えればよいのです。原点からスタートして表が出れば右に1、裏が出れば左に1動くのがドリフト0の例、表が出れば右に10、裏が出れば左に2うごくなら、拡散係数は6で、右ドリフトが4かかっている、という気分です。あくまで気分なので数値は信用しないようにしてください。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
実験における誤差範囲の許容範...
-
相対誤差が小さいと判断する基...
-
計算値と理論値の誤差について
-
平均値、標準偏差の有効数字に...
-
【電気・蛍光灯の安定器はどこ...
-
3重解?
-
回帰直線の変数xとyを入替えた...
-
中和滴定の実験において、 ビュ...
-
角測量
-
両端支持はりのたわみの誤差が...
-
150 25 0、20の有効桁数を教え...
-
相対値の誤差
-
物理量Wが物理量X,Y,Zの関数と...
-
2個以上の部品を重ねて使用する...
-
デジタルテスターの精度の意味
-
誤差を含む数値同士を掛け算し...
-
50 cm^3のメスフラスコについて
-
フルスケール誤差の値の範囲に...
-
-logx+(2e-x)/x=0の解
-
誤差を含む数字同士を掛け算し...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
実験における誤差範囲の許容範...
-
平均値、標準偏差の有効数字に...
-
3重解?
-
相対誤差が小さいと判断する基...
-
抵抗器 色 意味
-
計算値と理論値の誤差について
-
球体の誤差
-
150 25 0、20の有効桁数を教え...
-
【電気・蛍光灯の安定器はどこ...
-
拡散定数から拡散速度を求める...
-
石油(軽油)のタンクより 出し入...
-
中学数学の誤差の絶対値を答え...
-
回帰直線の変数xとyを入替えた...
-
高一物理 なぜルート√を近似値...
-
両端支持はりのたわみの誤差が...
-
問ひたまふこそこひしけれ ↑の...
-
高校化学、気体、温度の有効数字
-
数値積分の累積誤差
-
誤差を含む数値同士を掛け算し...
-
デジタルテスターの精度の意味
おすすめ情報