
No.2ベストアンサー
- 回答日時:
1
A・A^-1=E
⇒
(A・A^-1)^T=E^T
⇒
(A^-1)^T・A^T=E
⇒
(A^-1)^T・A=E
⇒
(A^-1)^T・A・A^-1=E・A^-1
⇒
(A^-1)^T=A^-1
2
-A^3=0
⇒
E^3-A^3=E
⇒
・・・・
⇒
E-Aの逆元は・・・
⇒
E-Aは・・
・・,・・・,・・・・を補足に書け
この回答への補足
・・・・ : (E-A)(E^2+EA+A^2)
・・・ : E+A+A^2
・・ : E+A+A^2 の逆行列
でしょうか?正直よく分かりません。
ちなみに、
E=E+A^3=(E+A)(E-A+A^2)
=E-A^3=(E-A)(E+A+A^2)
を用いて、E+A、E-Aの逆行列を具体的に求める
という方針で解くとどうなるのでしょう。
No.4
- 回答日時:
・・に正しい語句を補足に書いて締め切れ
この質問以外の質問は改めてすること
この回答への補足
訂正:ANo.3の補足
Aが正則のとき、A・A^-1=A^-1・A=E
最終的に以下のように解答しました。
※「A^-1」はAインバース(Aの逆行列)を、「t^A」はAの転置行列を表す
1.証明)
Aが正則な対称行列だから、
t^(A^-1)・t^A=E
t^(A^-1)・A=E
t^(A^-1)・A・A^-1=E・A^-1
t^(A^-1)・E=E・A^-1
t^(A^-1)=A^-1
よって、A^-1も対称行列である。
2.証明)
A^3=O
A・A・A=O
A・A・A・A^-1=O・A^-1
A・A・E=O
A^2=O
E=E+A^3=(E+A)(E-A+A^2)=(E+A)(E-A+O)=(E+A)(E-A)
よって、E+A、E-Aは互いに逆行列同士なので、ともに正則行列である。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
おすすめ情報