

No.7ベストアンサー
- 回答日時:
#6です。
#6での証明において若干の誤りを発見致しましたので、ご訂正
させていただきます。
(m+n)/2 < p < (m+n)の箇所についてですが、
m ≦ (m+n)/2でなければならない事を見落としておりました。
m ≦ (m+n)/2であるためには、m ≦ nでなければなりません。
(m+n-1)/2 < p < (m+n-1)の箇所についても、
m ≦ (m+n-1)/2であるためには、
m ≦ n - 1でなければなりません。
これは両者ともm < nのときに成立するので、
m < nのときは、一応、#6の証明で良いわけですね..。
後、m≦nの場合については、
1/m + .... + 1/(m+n) < 1/m + .... + 1/m = n/m ≦ 1より
与式は整数値を取らない事が証明されます。

No.6
- 回答日時:
まず、m+nが偶数、奇数の場合に分けて証明する事を試みます。
(1)m+nが偶数のとき
以下のチェビシェフの素数定理である
「任意の自然数nにおいて、n < p < 2nとなるような素数pは
必ず存在する」
を適用すれば、(m+n)/2 < p < (m+n)を満たす素数pが存在します。
ここで、
1/m + 1/(m+1) .... +1/p .. + 1/(m+n) = K(Kは整数)
であると仮定します。
1/m + 1/(m+1) ... + 1/(m+n) = K - 1/p
そして、L = {m×(m+1)........×(m+n)}÷pとおき、
両辺にLをかけると、左辺は整数となり、
右辺はLK-L/pとなります。
ここで、(m+n) < 2pより、
Lにおけるどの因数においてもpの約数ではない事がいえるため、
LKは整数であり、L/pは整数とならず、左辺は整数なので矛盾します。
(2)m+nが奇数の時
(m+n-1)/2 < p < (m+n-1)
となるような素数pは存在し、
(m+n-1) < 2pとなる事から、
(m+n)≦2pとなります。
だが、(m+n)は奇数、2pは偶数であるので、
(m+n)=2pになる事はあり得ない。
よって、(m+n) < 2pであると言える。
以降は、(1)と同様の議論で矛盾を導き出せます。
No.5
- 回答日時:
以下、回答を
(1/1+1/2+1/3+…+1/nの場合と基本的に考え方は一緒です)
証明
「
m,m+1,・・・,m+nから任意に自然数kをとると
kは以下のように書ける。
k=(2^s)*(2t-1)
sは0以上の整数、tは自然数
(つまり、kを素因数分解したときの2の指数がsとなる)
「kの中で、sの値が最大になるようなものがあるので、それをk_0とする。
(このときのsの値をs_0とする)」・・・※
ここで補題を示します。
m,m+1,・・・,m+nのなかには、素因数分解したときの2の指数がs_0となるのは、k_0以外にはない。
補題証明
背理法で示す。
m,m+1,・・・,m+nのなかに、2の指数がs_0となるような数がk_0以外にk_1があったと仮定する。・・・○
k_0=2^(s_0)*{2(t_0)-1}
k_1=2^(s_0)*{2(t_1)-1}
ただしt_0、t_1は自然数である。
k_0<k_1のとき
m,m+1,・・・,m+nのなかに、2の指数がs_0となるのは少なくとも
k_0=2^(s_0)*{2(t_0)-1},2^(s_0)*{2(t_0)+1},・・・,k_1=2^(s_0)*{2(t_1)-1}
a=2^(s_0)*{2(t_0)+1}とすると、{a+(k_0)}/2=2^{(s_0)+1}*(t_0)
したがって、m,m+1,・・・,m+nのなかに2^{(s_0)+1}で割り切れる数{a+(k_0)}/2が存在するので、※に反する
k_1<k_0のとき
k_1=2^(s_0)*{2(t_1)-1},・・・,2^(s_0)*{2(t_0)-3},k_0=2^(s_0)*{2(t_0)-1}
b=2^(s_0)*{2(t_0)-3}とすると、{a+(k_1)}/2=2^{(s_0)+1}*{(t_0)-2}
したがって、m,m+1,・・・,m+nのなかに2^{(s_0)+1}で割り切れる数{b+(k_0)}/2が存在するので、※に反する
したがって、○の仮定は誤りで、m,m+1,・・・,m+nのなかには、素因数分解したときの2の指数がs_0となるのは、k_0以外にはないことがいえた。
補題証明終
さて、問題に取り掛かろう
1/m+1/(m+1)+…+1/(m+n)=T(整数)
となると仮定する。
m,m+1,・・・,m+nの最小公倍数cをとる。
よって
c/m+c/(m+1)+…+c/(m+n)=cT・・・□
k_0はm,m+1,・・・,m+nのなかで、素因数分解したときの2の指数が最大のs_0となる。
したがって、cを素因数分解したときの2の指数はs_0となっている。・・・■
よってcは偶数であり、したがって□の式の右辺=cTは偶数である
しかし補題より、「m,m+1,・・・,m+nのなかには、素因数分解したときの2の指数がs_0となるのは、k_0以外にはない。」ことがいえている。
よって、□の式の左辺のc/(k_0)だけが奇数で、残りのc/m,・・・,c/{(k_0)-1},c/{(k_0)+1},・・・,c/(m+n)は偶数となる。
よって、□の式の左辺は
c/m+c/(m+1)+…+c/(k_0)+・・・+c/(m+n)=(偶数)+(奇数)+(偶数)=(偶数)+(奇数)=奇数となる。
以上より□の式の両辺は、奇数=偶数となって不合理
したがって、1/m+1/(m+1)+…+1/(m+n)が整数になりえないことが示された。
証明終
」
No.4
- 回答日時:
私は整数論に詳しくないので、思いついたことを書きます。
少なくとも m~m+n-1 の数を複数個選んで(m+n)が構成出来ないと無理です。 ・・・ この条件を後で使いましょう
1/A1 + 1/A2 + 1/A3 ...+1/An を考えると
=(B1+B2+B3...Bn)/A1A2・・・An
※ Bm = A1A2・・・An/Am
と出来ます、ここで B1~B[n-1] は全て An を約数として持ちますが Bn は An を約数に持ちません。(最初の条件参照)
それ故に (B1+B2+....Bn) は An で割ることが出来ないので整数ではありません。
つまり任意のmに対し、m+nが素数になるような n では例の和は整数にならない。
これを応用して(略証しますが)
{m、m+1...、m+n}(=Sとさせて頂く) この集合を考えて。この中で互いに素な元が含まれていれば例の和は整数にならない。
と出来ます。それゆえに
任意のmに対し、Sが互いに素な元を含まないようなn
そういうnは存在しない
このことを証明すればよろしいと思います。
ちなみに私はめんどくさいのでこれ以上やりません。
katadanaokiさんの理解と発展に繋がることを祈ります。
No.3
- 回答日時:
これは結構難問だと思います。
1/1+1/2+1/3+…+1/nが整数ではないことの証明は知っていますが、
途中からの連続する自然数の逆数和の場合は残念ながら知りません。
ただ、ポール・エルデシュという数学者が考えた問題であることは
知っていたので、検索をかけてみたらちょっと書いてあるサイトを
見つけました。証明までは載ってませんでしたが・・・
とりあえず調べるきっかけとして。
参考URL:http://www5d.biglobe.ne.jp/~bongo/math/math02.ht …
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
なぜ等号は常に成り立たないの...
-
チェビシェフの不等式について
-
証明の問題なのですが・・・
-
数学IIの問題です 0≧xのとき、...
-
部分分数分解について。 1/a・b ...
-
何時間 何分 何秒を記号で表...
-
履歴書で証明写真を提出した次...
-
数学で出てくる十分性と必要性...
-
皆さん定義を教えてください 「...
-
鋼材について
-
イコール
-
数学のハット、キャレットの意...
-
無限から無限を引いたら何にな...
-
数学の問題で丸に真ん中に線が...
-
〈学歴詐称疑惑の伊東市長〉「“...
-
「∝」←この記号ってどういう意味?
-
∞/0って不定形ですか?∞ですか...
-
「i386」「i486」「i586」「i68...
-
数字の上のバー
-
「互いに素」の定義…「1と2は互...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
なぜ等号は常に成り立たないの...
-
部分分数分解について。 1/a・b ...
-
nの階乗と2のn乗の比較
-
急いでいます 数学の問題
-
(n!)^2≧n^n(nは自然数)
-
(1+h)^n≧1+nh+{n(n-1)/2}h^2
-
√2,√3,√5,√6,√7,√10は有理数体...
-
数学的帰納法 不等式の証明
-
これは合っていますか? 間違っ...
-
述語について成り立つ関係
-
無理数から無理数を引いた結果...
-
√11の連分数表示
-
数ⅱ等式の証明について。 条件...
-
証明の問題なのですが・・・
-
数学的帰納法の問題
-
教えてください
-
十分性の確認の問題について
-
整数問題 19 島根大学
-
どうしても解けない問題たち・...
-
||a+b|| ≦ ||a|| +||b||の証明
おすすめ情報