
No.2ベストアンサー
- 回答日時:
あります.複素関数論では頻繁に取り扱います.
底が e である指数関数 e^x は,e を x 回かけるという
直感的な定義とは全く別の方法で定義できます.
(たとえば e^x = lim_{n→∞} (1 + x/n)^n など)
そう定義した e^x を用いて,一般の複素数 a に対して
a^x = e^{x log a}
と定義します.ただし log は上で定義した e^x の逆関数です.
こうすると,a が正の数の場合は,普通の a^x と一致し,a が一般の場合も
指数関数が持っているべき性質を一通り保存してくれます.
(なぜこうするかは,複素関数論の話です.
いつか勉強する機会があるかもしれませんね.)
ちなみに,この定義によれば a を正の数としたときに
(-a)^x = a^x ( cos(πx) + i sin(πx) )
が成立します.
No.4
- 回答日時:
底の変換公式 log_a x = (log x) / (log a) を使って、
log_a x を a < 0 まで拡張するやり方があります。
そのためには、自然対数 log a が a < 0 まで拡張されて
いなければなりません。しかし、log を実関数と考える限り、
連続関数のまま、負数まで定義域を広げることはできません。
そこで、log の定義 log a = ∫[xが-∞からaまで](1/x)dx の
式中の∫を、実積分から複素積分へ読み替えるという拡張を行い、
log を複素数から複素数への関数としておきます。
このように定義された複素関数 log x は、
x が実数のとき実関数 log x と一致し、
複素数の範囲で、恒等式 log(xy) = (log x) + (log y) など
を満たします。
この複素 log の逆関数を、複素 e^ と定義すれば、
有名な等式 e^(iθ) = (cos θ) + i (sin θ) が成立
するようになります。
No.3
- 回答日時:
数学は、定義とその拡張の歴史です。
そして新しい数学分野が生まれていきます。自然数→負の整数→有理数(分数)→無理数→実数→虚数→複素数→位相空間→n次元ベクトル→...
高校で扱われる範囲は限定されています。
高校では
指数関数a^xの底が0<a<1と1<aの場合を扱いますが、
a=1の場合は
1^x=1 ですので あえて関数で扱わなくても、定数の方で扱えばいいという事でしょうね。(y=1^x→log(y)=x*log(1)=x*0=0=log(1),y=1)
y=1^x=1(定数)のグラフはy=1のグラフと同じになりますね。
y=1^x=1と定義しておけば、a>0でa^xの定義を拡張できますね。
a=0の時は
0^x=? 0^0=?,0^n=0(n=1,2,3,...),
0^(-1)=1/0=∞ ?,
0^(1/3)=?,0^(√2)=?
拡張は問題がありそうですね。
a<0の場合の拡張
a=-bとおくと b>0
a^x=b^x*(-1)^x
b^xは定義できていますので
(-1)^x
が問題ですね。
x=n(自然数)の時は
(-1)^nは
n=偶数のとき 1
n=奇数のとき -1
x=1/n(nは正の整数)のとき
z=(-1)^(1/n)
z^n=-1
zはz^n +1=0のn乗根で一般的に複素解がn個できます。
n=偶数のとき全部複素数
n=奇数のとき-1と他の(n-1)個の複素解となります。
(-1)^(1/n)はnが奇数の時だけ実数の範囲では-1となります。
複素数まで拡張すれば、nが奇数のとき -1以外に(n-1)の複素数の値を持ちます。nが偶数の場合はn個の複素数の値を持ちます(実数は存在しない)。
(-1)^(m/n),(m,nは正整数,m/nは既約有理数の場合、拡張がさらに複雑ですね。
例えば
(-1)^(2/3)=(-1)^{2*(1/3)}={(-1)^(1/3)}^2= 1,(1±i√3)/2
(-1)^(1+√2)などの一般の実数乗となると拡張が困難ですね。
つまり、定義できないので値がないということになります。
特定の実数、つまり
x=1/(2n-1)の時(複素値も持つ)と
x=nの時
だけ実数の値が存在します(定義可能)ので
実数のXY座標平面で
a^x=(b^x)*(-1)^x,(a<0,b>0)の場合は
飛び飛びのxに対して実数値の値をもつグラフとなります。
しかし、a^xの値が実数xに対して
実数として定義できたり、
虚数の値(虚数の多価関数)になったり(実数値は存在しない)、
実数と虚数の多価関数になったり、
定義できない場合があります
ので、「高校の範囲」では
「a<0の場合は扱わない」
ことになっている。
a=1の場合はa^x=1で定数として別扱いして
指数関数としてはa≠1としている。
という事だと思います。
回答ありがとうございます。
>数学は、定義とその拡張の歴史です。
この言葉、グッときました。
やっぱり指数関数をマイナスまで拡張すると難しい話になるんですね。大変参考になりました。ありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
べき乗
-
皆さん定義を教えてください 「...
-
無限から無限を引いたら何にな...
-
e<3の証明を教えてください。
-
「切り捨て」について
-
性暴力ってどこまでOK,どこから...
-
「たて目」っていうのは要する...
-
1未満と1以下の違い
-
同時(性)の定義の意味、そして...
-
「logx^2=2logx」が間違って...
-
単調増加、単調減少の x の範囲
-
5桁の整数nにおいて,万の位,...
-
コンビネーションの偶数奇数判...
-
合法ロリの年齢的定義は、何歳...
-
1wordとは、何文字ですか?
-
ヘシアンが0の場合どうやって極...
-
Vがベクトル空間でW1,W2がVの部...
-
外延性の公理について(F=Gがあ...
-
有効数字での切り上げについて
-
eの0乗は1ってどういう原理です...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
皆さん定義を教えてください 「...
-
べき乗
-
同時(性)の定義の意味、そして...
-
無限から無限を引いたら何にな...
-
eの0乗は1ってどういう原理です...
-
1未満と1以下の違い
-
「たて目」っていうのは要する...
-
最大元と極大元の定義の違いが...
-
直和分解とは? 同値関係、同値類
-
ヘシアンが0の場合どうやって極...
-
性暴力ってどこまでOK,どこから...
-
「logx^2=2logx」が間違って...
-
合法ロリの年齢的定義は、何歳...
-
「互いに素」の定義…「1と2は互...
-
日本語 ことば ひとまわり ふた...
-
√6=√(-2)(-3)=√(-...
-
複雑な家庭とは
-
電磁誘導に法則 V=ーdφ/dt...
-
p⇒q=(¬p)∨qについて
-
lim n→0 =n=0となりますが lim ...
おすすめ情報