
No.4ベストアンサー
- 回答日時:
簡単そうに見えて、それ程簡単ではない。
x>0、y>0より相加平均・相乗平均から、x+y≧2√(xy)、等号はx=yの時。したがつて、x+y=20から 10≧√(xy)であるから、xy≦10^2 。 つまり、logx+logy≦2 ‥‥(1)
次に、条件x+y=20よりグラフを書くとわかるが、x-1<0、y-1<0が同時に成立する事はない。
又、(x-1)*(y-1)<0の時は、logx*logy<0となる。
従って、x-1>0、y-1>0 、つまりlogx>0、logy>0の場合について考えると、この時にlogx*logyの最大値としてある正数が存在すると、それが求めるものである。
相加平均・相乗平均から、logx+logy≧2√(logx*logy)(等号は、logx=logyの時)‥‥(2)
(1)と(2)より、2≧logx+logy≧2√(logx*logy)であるから、logx*logy≦1. (x=y=10の時)
No.3
- 回答日時:
> y=20-xにすればいいのですか?
それでも結構です。
f(x)={log_10(x)}{log_10(20-x)}
=[{log_10(e)}^2]{log_e(x)}{log_e(20-x)}
=K{log_e(x)}{log_e(20-x)}, 0<x<20, K={log_10(e)}^2
として
普通に微分して増減表を増減表を作れば
x=10の時最大になることが分かります。
No.1
- 回答日時:
これはxyの最大値を求めよというのと同じです。
直線の距離とxy=kという双曲線のグラフを第一象限だけで描き、kを変えるとグラフがどう動くかを観察して下さい。双曲線と直線が交わる状態でのkの最大値が回答になります。それのlogを取ればいいわけですからね。お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
今、見られている記事はコレ!
-
隣の枝がはみ出してきたら切ってもいい?最もやってはいけないことは?
「隣の木が越境してきて困るが、勝手に切ってはいけないと聞くし…」そう思っている方も多いだろう。実は、2023年4月1日に民法が改正され、この「越境枝」のルールが大きく変わった。 教えて!gooでも「境界から出て...
-
弁護士が解説!あなたの声を行政に届ける「パブリックコメント」制度のすべて
社会に対する意見や不満、疑問。それを発信する場所は、SNSやブログ、そしてニュースサイトのコメント欄など多岐にわたる。教えて!gooでも「ヤフコメ民について」というタイトルのトピックがあり、この投稿の通り、...
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
∫{x/(x+1)}dxの解き方
-
log2の5は?
-
1/(1-x)や1/(1+x)の積分形
-
lim[x→∞]log(1+x)/x これってど...
-
透過率から吸光度を計算する際...
-
なぜxがe^logxと変形できるので...
-
y=x^x^xを微分すると何になりま...
-
フェルマーの最終定理に欠陥を...
-
256は2の何乗かを求める式
-
∫log(x^2)dxの不定積分を教えて...
-
e^x=2のときのxの求め方
-
この連立方程式の解き方がわか...
-
lnをlogに変換するには・・
-
XlogXを+側から0に近づける時
-
∫log sinx dxや∫log cosx dx ...
-
y=x^(1/x) の 微分
-
∫1/x√(x^2+1) の積分について。
-
logとln
-
y=x^2logxのグラフの増減ってど...
-
logとlnの違い
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
e^x=2のときのxの求め方
-
∫{x/(x+1)}dxの解き方
-
1/(1-x)や1/(1+x)の積分形
-
なぜxがe^logxと変形できるので...
-
lim[x→∞]log(1+x)/x これってど...
-
log2の5は?
-
自然対数をとる?とは・・・
-
y=x^(1/x) の 微分
-
lnをlogに変換するには・・
-
両対数グラフでの直線の傾きと...
-
256は2の何乗かを求める式
-
∫log(x^2)dxの不定積分を教えて...
-
y=x^x^xを微分すると何になりま...
-
超初歩的質問ですが・・
-
2を何乗すると6になりますか? ...
-
連続ガス置換の式
-
log3^1はなんで0になるんですか?
-
eの指数の計算がわかりません。
-
透過率から吸光度を計算する際...
-
y=x^2logxのグラフの増減ってど...
おすすめ情報