特性インピーダンスとインピーダンスの違いについて教えてください。高周波の伝送線路のところに出てくる特性インピーダンスと素子のインピーダンスの違いが詳しくわからないのです。おわかりの方どうかお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (6件)

地球から太陽まで距離のある長い電線の先に電球がつながれていて、地球側から電線に電池を接続したら、いつ電流が流れるかということ考えたことがありますか?


この問題を解くことで、特性インピーダンスが理解できるようになります。

素子のインピーダンスについては、おわかりだと思いますので、以下、特性インピーダンスの理解のしかたについて説明いたします。

長い伝送線路(同軸ケーブルとか平行フィーダなど)を想定してください。

線路の片端に1.5Vの乾電池をつなぐと、1.5Vの電圧が線路を光速に近い速度で満たされていきます。
短い線路ですと、電圧は終端にすぐに届いてしまい、反射して返ってくるので、そういうややこしいことは考えなくてもよいよう、線路の長さは、とりあえず、無限とします。

このとき、乾電池から、線路へ「一定の電流」が流れます。
線路には長さに比例したインダクタンスと静電容量があるので、電圧が伝わっていく過程で、線路は磁化・チャージされ、電磁エネルギーが満たされていきますので、線路には電流が流れます。電圧が満たされているポイントはどこでも一定の電流です。
長いホースに水を流し始め、ホースの中を水が満たされていく過程に似ています。

線路は、乾電池がつながれた瞬間からエネルギーを吸い取っていくので、
乾電池から見れば、線路は「抵抗」のように見えます。
乾電池の電圧を電流で割った値が、「特性インピーダンス」です。

「50オームの抵抗素子」と「特性インピーダンス50オームの無限長伝送線路」は、いずれを乾電池につないでも、乾電池からみると同じ50オームの純抵抗に見えます。

以上、直流電圧を印加した場合で説明しましたが、特性インピーダンスは、「周波数に無関係」なので、高周波においても同じ事がいえます。

インピーダンス整合についてちょとだけ触れておきます。
特性インピーダンス50オームの同軸ケーブルの先に、75オームのケーブルを接続した場合、毎秒あたりにエネルギーを運ぶ能力が異なるケーブルが接続されていることを意味します。これにより、接続点で、エネルギーが余ったり、不足するという事態が起こり、波を伝送する場合、正の反射、負の反射が発生してしまい、効率良くエネルギーを伝送できなくなります。
この場合、50オームを75オームに変換するインピーダンス整合器をつけることで反射を無くすことができます。
インピーダンス整合には変圧器を使います。巻数比の2乗がインピーダンスの比率なので、50オームを75オームに変換するには、ルート(75/50)=1.22の巻数比の変圧器で整合がとれます。
    • good
    • 3

簡単に言うためにLとCだけで説明しますと、



普通のインピーダンスはLとCが同じ回路上にあります。
例えば、インピーダンス
Z = jωL + 1/jωC
などです。

一方特性インピーダンスは、行きと帰り2本の線路においての話です。この線路においてLは上の話と似たようなものですが、Cは2本の線路の間にどうやっても発生してしまうコンデンサーとしての働きの大きさです。このLとCの比を取って√つけたものが特性インピーダンスです。
特性インピーダンス
Z0 = √(jωL/jωC) = √(L/C)
    • good
    • 2

50オームの特性インピーダンスの伝送線路は、伝送線路上の何処から測定しても50オームです。

特性インピーダンスは、伝送線路が持っているインピーダンスです。
50オームの特性インピーダンスの伝送線路を作るには、50オームの抵抗を端点に付けて反対側に反射係数の測定できる50オームの測定器をつけて反射係数を0になるように伝送線路を作ればよいのです。よって200オームでも500オームでも同じように伝送線路を作ることは可能です。インピーダンスの実数部と虚数部を特性インピーダンスで割ることを規各化するといいます。
スミスチャートは規各化した座標をグにゅっと曲げて円にしたものです。
    • good
    • 0

伝送路の特性インピーダンスに対して私の持っているイメージは、


 波を伝えるときに、媒体の特性が異なるものの界面では
 周波数が同じでも波長が違ってくるため接合面で反射が発生します。
 伝送路においては、(分布した)LCRの組み合わせでできるインピーダンスが
 ちょうど媒質の特性にあたり、これを特性インピーダンスといいます
 (LCR回路をはしご状に組んだものをどんどん細かくしていって
  そのときに回路端から見込んだインピーダンスを想像していただければいいかと思います。
  どこを切っても(無限の長さがあれば)同じなので特性インピーダンスというのではないでしょうか?)。
というものです。
 これらを整合させることにより、伝送路中の反射を抑制できるため、高周波回路では、コプレーナ線路やマイクロストリップ線路で一定のインピーダンスを持たせ、素子の部分でも同じインピーダンスにするようにします。(たとえば、インピーダンスが低い素子で終端する場合は、マッチング抵抗や、インダクタンスを組み込んで、インピーダンス整合をとります。)
そういえば、一昔前は、パソコンの外部機器との接続で終端していないためトラブッたということが良くあったのに、最近は聞かなくなりましたね。技術の進歩なのでしょうか?
    • good
    • 0

単なるインピーダンスにもいろいろあるのですが、


とりあえず、
「特定の条件(周波数など)に於ける、その素子(または回路)の
 固有のインピーダンス」ということにしておきます。

さて、次の伝送線路の特性インピーダンスですが、
伝送線路がどういうものかがわかれば、疑問は氷解するはずです。
伝送線路というのは、
特定の条件下で、線路(伝送路)が無損失になることを利用したもの
です。
で、その特定の条件の中に、特性インピーダンス(LとCの比率)も
含まれます。というよりも、非常に大切なファクターです。
ですから、条件から外れたインピーダンスで終端すると、
無損失になる条件が崩れるので損失が発生するわけです。

なお、反射による損失と、特性インピーダンスから
外れた信号の伝送による損失は、分けて考えて下さい。

反射そのものは伝送路に対してエネルギーを消費させません。
伝送路に入らず戻るだけです。
(行き場が無いと熱になりますが)
特性インピーダンスから外れた特性の信号を伝送することによる
損失は、伝送路全体に生じます。

たとえば、50Ωの1/2波長同軸線路に100Ωの終端がついていると
ドライブ端は25Ωです。ここに25Ωの無限長の線路を接続した場合
反射は生じませんが、線路は無損失とはならないため、
線路上に損失を生じます。
終端が50Ωなら、ドライブ端も50Ωです。
ここに25Ωの無限長線路を接続すると、ドライブの半分は損失と
なりますが、これは反射ですから、この損失は25Ω線路側に生じます
    • good
    • 0

回路または装置としてのインピーダンスと素子の固有のインピーダンスと言うことではありませんか?回路または装置としてのインピーダンスはPCBや配線材、シールドやケースなどの要因が加わったインピーダンスになるので素子単体で計算したインピーダンスとは必ずしも一致しないので(特に高周波でPCBはストレ容量の計算を誤ると動作しない場合も珍しくない)このような表現になったのでは。

    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q誘電率(ε)と誘電正接(Tanδ)について教えてください。

私は今現在、化学関係の会社に携わっているものですが、表題の誘電率(ε)と誘電正接(Tanδ)について、いまいち理解が出来ません。というか、ほとんどわかりません。この両方の値が、小さいほど良いと聞きますがこの根拠は、どこから出てくるのでしょうか?
また、その理論はどこからどうやって出されているのでしょうか?
もしよろしければその理論を、高校生でもわかる説明でお願いしたいのですが・・・。ご無理を言ってすみませんが宜しくお願いいたします。

Aベストアンサー

電気屋の見解では誘電率というのは「コンデンサとしての材料の好ましさ」
誘電正接とは「コンデンサにした場合の実質抵抗分比率」と認識しています。

εが大きいほど静電容量が大きいし、Tanδが小さいほど理想的な
コンデンサに近いということです。
よくコンデンサが突然パンクするのは、このTanδが大きくて
熱をもって内部の気体が外に破裂するためです。

伝送系の材料として見るなら、できるだけ容量成分は少ないほうがいい
(εが少ない=伝送時間遅れが少ない)し、Tanδが小さいほうがいい
はずです。

Q同軸ケーブルの特性インピーダンスについて

同軸ケーブルの特性インピーダンスというものがいまだに分かりません。なぜ50Ωと75Ωのものしか存在しないのでしょうか?
これは交流電圧をかけたときの電圧と電流値の比として表されますが、これって交流の周波数によって変わらない値なのでしょうか?

以前ケーブルを踏んづけたりするとこの値は変わってしまうというようなことを聞いたのですが、これっておかしくないでしょうか?ケーブルの特性インピーダンスは長さによらず一定の値を持ちます。つまりプラグの近くの入り口、出口のところだけで決まる値ということですよね?その値がケーブルの真ん中でちょっと曲がるだけで値が変わるというのはどういうことなのでしょうか?

Aベストアンサー

ほかの値のものの存在していますよ。
ARCNETという制御用のLANではRG-62という93オームののものが使われます。インピーダンス変換の時には125オームや35オームの同軸がほしくなるのでRG-83(35オーム) RG-79(125オーム)なんてものもあります。(特殊用途用なので、販売店では特注扱いなると思われます)

50オームと75オームがよく使われて、ほかのものは淘汰されてなくなったのでしょう。特性インピーダンス変換はレベル変換などに比べると面倒ですから、インピーダンスが複数あるのは実用上かなり面倒な事態です。
(通常汎用の測定器は50オームなので、75オームの機器の特性を測定しようとすると結構面倒なのです)

同軸ケーブルの特性インピーダンスは、内部導体と外部導体の太さの比で決まりますので、絶縁体がやわらかいFBケーブルを踏んだりして外部導体の太さが変化するとそこだけ特性インピーダンスが下がることになります。

Q表皮効果の原理について

表皮効果の原理について教えて下さい。

なぜ導体表面のみが高周波電流を流すことが出来て
導体内部では出来なくなるのでしょうか?
これは何が関係しているのでしょうか?

これって導体内部が穴だらけのすかすかの導線を使えば
高周波をうまく流すことが出来るということなのでしょうか?

Aベストアンサー

導体を電流が流れると磁界が生じます。電流が交流だと交流磁界が
生じますが、これは導線の中にも存在します。そして、交流磁界は
導線の中に起電力を生じますが、この起電力は電流の変化を妨げる
方向に生じます。

もっとはっきり言うと、自分が出した磁界で、自分自身(電流)が
流れにくくなるのです。(自己インダクタンスも参照してください)

導体の表面は磁束との交差が一番少ないので一番流れやすい場所なのです。
(導体の中心は導体全部が出した磁界とリンクしますが、表面はそれより
内側の磁束とはリンクしません)

導体内部がすかすかの導体を使うと、ムクよりよく流れるかというと
そうではありません。ただ、電流を流すのに寄与していない部分は
なくても良い、という考え方です。中心だって全然寄与していないわけ
ではないのですが、寄与率が低いので切り捨てられるのです。
(切り捨てた割には流れにくくならない)

むしろ、細い線を束ねたものがよく使われます。線どうしは絶縁して
あります。高周波は1本1本の表面を流れますが、多数あるので真ん中
の方でもちゃんと流れます。リッツ線と言いますが、これは近接効果
も関係しています。

表皮効果は高周波だけの現象ではありません。低周波では起きない
現象だと勘違いしている人もいるようなのでご注意ください。

たとえば、送電線は50Hzか60Hzを流しますが、この周波数での表皮
深さは約10mmです。なので、直径20mm以上の太い線を張るのは効率が
よくありません。

そこで、中心には電気を流す必要がないからスチールの丈夫なワイヤを
配置して、周囲をアルミや銅で覆うという構造の線が使われます。

表皮効果を完全に理解するのは結構大変ですよ。

導体を電流が流れると磁界が生じます。電流が交流だと交流磁界が
生じますが、これは導線の中にも存在します。そして、交流磁界は
導線の中に起電力を生じますが、この起電力は電流の変化を妨げる
方向に生じます。

もっとはっきり言うと、自分が出した磁界で、自分自身(電流)が
流れにくくなるのです。(自己インダクタンスも参照してください)

導体の表面は磁束との交差が一番少ないので一番流れやすい場所なのです。
(導体の中心は導体全部が出した磁界とリンクしますが、表面はそれより
内側...続きを読む

Q同軸ケーブルについて教えて下さい。

同軸ケーブルは高周波を伝送するために、一般的に用いられますが、
その使い方について質問させてください。


・同軸ケーブルが高周波成分を減衰させることなく信号を搬送出来るのはグラウンドとの寄生容量が小さいためであると思うのですが、高校の電磁気学では電極を近づけるほどその容量は大きくなると習いました。
同軸ケーブルのようにグラウンドを近接させてしまうと逆にローパスフィルタのようになってしまうと思うのですが、なぜそのようなことが起きないのでしょうか?

・50Ωの同軸ケーブルをテスターで測ってみると確かに50Ωと表示されますが、とすると電流を流すことは出来ないということなのでしょうか?
例えば、抵抗値1kΩのLEDに50Ωの同軸ケーブルを繋いでを点灯させることを考えると、ほとんどの電流はグラウンドに流れてしまい、かなりの電圧をかけないとLEDは光らないことになりますが、これは合っていますでしょうか?

・上記のことが正しいとするとLEDを100kHzで点滅させたいとき、同軸ケーブルを使うとうまく電流が流れないため、普通の導線を使う必要があると思うのですが、
となると一つ目の質問でもあるように、導線は高周波を搬送することが出来ないため、高周波電流を搬送することが出来なくなってしまうように思うのですが、どうなのでしょうか?

よろしくお願いいたします。

同軸ケーブルは高周波を伝送するために、一般的に用いられますが、
その使い方について質問させてください。


・同軸ケーブルが高周波成分を減衰させることなく信号を搬送出来るのはグラウンドとの寄生容量が小さいためであると思うのですが、高校の電磁気学では電極を近づけるほどその容量は大きくなると習いました。
同軸ケーブルのようにグラウンドを近接させてしまうと逆にローパスフィルタのようになってしまうと思うのですが、なぜそのようなことが起きないのでしょうか?

・50Ωの同軸ケーブルをテ...続きを読む

Aベストアンサー

いくつか誤解があるように思います。
>50Ωの同軸ケーブルをテスターで・・・
どのように測ったのでしょうか? 何キロメートルのケーブルですか。
 同軸ケーブルの50Ωというのは、特性インピーダンスを言います。
中心導体と外側導体の間をテスターで測って、50Ωにはならないと
思います。終端を解放して測ったら、ほとんど無限大。短絡して測った
らほとんど導線の直流抵抗(これは小さい)となります。
特性インピーダンスZoは、ケーブルの単位長さ当たりのインダクタンスをL、
キャパシタンスをCとすると、ほぼZo=√(L/C)で与えられます。
これが50Ωです。テスターでは測れません。
ふつうの同軸ケーブルでは導線の抵抗と誘電体の漏れ抵抗は小さい。
同軸ケーブルでは、通常の電気回路(集中定数回路)と違って、分布定数回路としての
取扱いが必要です。回路方程式は、偏微分方程式で与えられます。
要するに、ケーブルの端からの距離と時刻により電圧や電流が変化します。電磁波がケーブル内を伝播していると考えてよいわけです。
導線の電気抵抗と絶縁体の漏れ電流は小さいので、信号は減衰は小さく、遠方まで届きます。また、非常に広帯域です。
そのため、テレビのアンテナのケーブルとしても、海外通信のための海底ケーブルとしても使われているのです。
 ケーブルの終端はそのケーブルの特性インピーダンスと同じ抵抗を接続します。(インピーダンス整合といいます)そうすると、始端からみたケーブルのインピーダンスも50Ω(抵抗)となります。したがって、ローパスフィルタにはなりません。
電気回路学の中の分布定数線路理論を勉強してください。

いくつか誤解があるように思います。
>50Ωの同軸ケーブルをテスターで・・・
どのように測ったのでしょうか? 何キロメートルのケーブルですか。
 同軸ケーブルの50Ωというのは、特性インピーダンスを言います。
中心導体と外側導体の間をテスターで測って、50Ωにはならないと
思います。終端を解放して測ったら、ほとんど無限大。短絡して測った
らほとんど導線の直流抵抗(これは小さい)となります。
特性インピーダンスZoは、ケーブルの単位長さ当たりのインダクタンスをL、
キャパシタン...続きを読む

Q誘電率の周波数依存性

物質の誘電率がある特定周波数と共振して急激に増加する
という現象はありますか?
また、それに関する情報を教えていただけたら幸いです!

Aベストアンサー

あります。

http://hr-inoue.net/zscience/topics/dielectric1/dielectric1.html

QdBμV/mとdBμVとdBm

教えてください!
dBμV/mとdBμVはどういう関連があるのでしょうか?
また、数値的に換算できるのでしょうか?
dBμV/mをdBmに換算するにはどのように計算すればよいのでしょうか?
仕事上知りたいのですが理系ではない自分は理解できません・・・
どなたかお教えください!!!

Aベストアンサー

dBμV/mは電界強度です 空間の電波の強さを示します /m 1mあたりを意味します

dBμVは電圧です 1μVを基準にしたときの電圧です
20dBμV であれば 10μV になります

dBμV/m と dBμV は 他の条件を仮定しないと換算できません

なお dBm は1mWの電力を基準にした電力を示します 負荷抵抗・インピーダンスを仮定すれば 電圧としても求められます

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q同軸ケーブルではなぜ電波が遅れるか

電気信号(電磁波)の伝播速度は有線でも無線でも、光速と聞いています。しかし、同軸ケーブルの場合は多少遅れると書いてあったのですが、どうしてでしょうか。
詳しい方、教えていただけたら助かります。
よろしくお願いいたします。

Aベストアンサー

同軸ケーブルは分布定数の形をとっているので、この中を高周波が通過するときは、電流としてではなく”電波”として通るためだそうです。

そのため、絶縁体の誘電率[ε]の影響を受け、電波の速度[v]は、
 v=c/√ε (c:光速)
 (ポリエチレンの場合 ε=2.7 なので、
   1/√2.7=0.61
 すなわち、光速の約60%)
となるそうです。

http://www.ne.jp/asahi/shiga/home/MyRoom/coaxialcable.htm
http://www.ne.jp/asahi/shiga/home/MyRoom/velocity.htm

参考URL:http://www.ne.jp/asahi/shiga/home/MyRoom/coaxialcable.htm

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q入力インピーダンスと出力インピーダンスについて

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信号を発信する側が、もともともっている内部抵抗です。
では、出力インピーダンスは、低いほど良い理由はなぜでしょうか?
マイクの出力インピーダンス(内部抵抗)が大きいと、自分自身でエネルギー(電圧)を使ってしまい、小さな音しか出せません。

私にはこの説明が理解できません。
入力インピーダンスの説明では、インピーダンスが大きいと、半導体が作動するのにエネルギーが少なくてすむ、と言っています。
ところが出力インピーダンスの説明では、インピーダンスが大きいと自分自身でエネルギーを使ってしまう、つまり多くのエネルギーが必要だと言っています。どう考えればいいのでしょうか。
何か基本的なことが理解できていない気がしてストレスがたまっています。

電気回路の初心者です。ネットのサイトで次のような説明を読みました。

入力インピーダンス(抵抗)が大きいと、電流があまり流れません。
電流があまり流れないと言う事は、半導体が作動するのにエネルギーが少なくてすむ (= 電圧降下が小さい) ということです。
作動エネルギーが少ないと、他の回路へエネルギー(電圧)を、振り分けることが出来きます。
以上の理由により、 入力インピーダンスは高いほど良い ということになります。
(略)
出力インピーダンスとはなんでしょうか?
マイクのように、信...続きを読む

Aベストアンサー

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力されるべきでしょう。
出力に100オームの負荷抵抗をつないだとき(電流がそれぞれ5mA、10mAの弱い電流)はもちろん、負荷抵抗が1オームのとき(電流はそれぞれ500mA、1Aの大量の消費電流)
でもでも負けず、出力端子には正確に0.5V、1Vが現れるべきです。
ところが現実には、出力回路内に妨害抵抗が生じます。これは、内蔵電池と出力端子との間に、例えば1オームが「直列に」入っている状態です。
このような出力端子に負荷抵抗をつないでみましょう。
電池が正確に0.5V(又は1V)を発生しており、出力端子の向こう側に100オームの負荷抵抗をつないであるなら、妨害抵抗によってわずかに電圧が低下し、
出力端子電圧は0.495V(又は0.99V)となって端子電圧としては誤差が発生し、さらに負荷抵抗が1オームになると、出力端子の電圧は0.25V(0.5V)で、大幅に不正確になってしまいますね。
「出力インピーダンス」とは、単純には「正確な電圧を発生させる電池と出力端子との間に直列に入っている妨害抵抗」ということができます。

・次に入力装置。テスター(電圧計)と考えましょう。
 理想的なアナログ電圧計を考えましょう。アナログ電圧計は、コイルに電流を流すと永久磁石との間で引力や反発力を生じて、ねじりバネをねじる強さとバランスさせることで
所定の位置まで針を動かすことはご存知でしょう。
安物はコイルの巻き数が少ないので、大きく針を振るためにはたくさんの電流を流す必要がありますが、高価なもの(高感度)は、コイルの巻き数が多く、わずかな電流でも大きく振れます(感度が高い)。この延長で、理想的なアナログ電圧計とは、電流をまったく流さなくても針が大きく振れるものです。
このとき、理想的な電圧計と、安物の電圧計の違いは、「並列に入った妨害抵抗」と考えることができます。
理想的な電圧計はまったく電流が流れないのに、安物は大量に流れる。仮に1V表示するのに安物は1A流す必要があるとすると、抵抗値は1オームとなり、これは、理想的な電圧計に並列に1オームの抵抗を入れたのと同じになります。
 1Vを出力しようとする出力装置が理想的(直列の妨害抵抗が入っていない)なら、どちらの電圧計をつなごうが端子電圧は同じ1Vで、電圧計としても1Vを表示しますが、出力装置の中に1オームの妨害抵抗が直列に入っている場合(出力インピーダンス1オーム)、電圧計が理想的ならなら直列の妨害抵抗があっても電圧降下が生じないので1Vを表示しますが、安物の電圧計(又は等価的につくった、理想的な電圧計に1オームの並列妨害抵抗をつないだもの)では、大きな電圧降下が生じて出力(=入力)端子電圧は0.5Vとなってしまいます。

・・・ということで、「出力インピーダンス」とは「出力に直列の妨害抵抗」と考えれば理解しやすく、「入力インピーダンス」とは「入力に並列の妨害抵抗」であり、どちらか一方が理想的(「直列の妨害が0オーム」か、「並列の妨害が無限大オーム」)ならば他方は理想的である必要はないが、現実には、どちらの妨害抵抗も存在する以上、「出力インピーダンスは小さく、入力インピーダンスは大きい」ほうが望ましいということになります。

(ご質問の中にある、”入力インピーダンスが大きいとエネルギーが少なくてすむ vs 出力インピーダンスが大きいとエネルギーがたくさん必要”の矛盾に関する疑問も、この「直列」と「並列」の関係ならご理解いただけるのではないでしょうか。)

なお、他の方から、「インピーダンスは必ずしも大きい(小さい)ほうが良いのではなく、マッチング(一致)が大切」という意見が出ていますが、これは次のように説明できます。
・「信号」は「情報」を送るので、基本的には”電圧だけが重要で、エネルギー(電力)は食わせたくない”。この前提では、上記の理想論のとおりであり、特に入力インピーダンスは無限大が良い。
・しかし、実際には、エネルギーが必要(アナログ電圧計でもバネをねじる仕事が必要)。したがって、どうしても一定量の電流を流す必要があり、入力インピーダンスを無限大にはできない。
このとき、ある法則により「出力インピーダンスと入力インピーダンスが一致したとき、入力側(受け取る側)に最大のエネルギーを与えることができる」という結果になっているので、両インピーダンスを一致させるのがいちばん良い
・さらに、別の法則から、高周波(高速で電圧が変動するので、長いケーブルにおいてはケーブルの場所によって電圧が異なる)においては、インピーダンスが一致しないと、「信号反射」等により波形が変形してしまうという結果になっている。

さてさて、すっかり長くなってしまいましたがいかがでしょうか。
お役に立てば幸いです。

こんにちは。
一生懸命お考えのようですね。
また、電池のモデルでほぼ到達できそうなところとお見受けします。

次のような説明ではいかがでしょうか。
ポイントは、「1Vを出力しようとして1Vとして受け取ってくれるかどうか。直列に入った”出力妨害抵抗”と並列に入った”入力妨害抵抗”が邪魔をする」

・まず、出力装置。出力装置は電池です。
 理想的な出力装置を考えましょう。これは電池(発電機)の一種と考えることができ、「0.5Vを出力すべき」「1Vを出力すべき」とき、それぞれその電圧が確実に出力さ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング