仕事を頑張る人のおしりトラブル対策

シルベスターの判定法は、対称行列において、この行列のすべての主小行列式が全て零以上であれば、この行列は準正定。
この行列のすべての主座小行列式が正なら、その行列の固有値も全て正。

ということらしいので、帰納法で示せないかと思ったのですが、どうもうまくいきません。

何か良い方法は無いでしょうか?
宜しくお願いします

このQ&Aに関連する最新のQ&A

A 回答 (5件)

すみません, もう一発訂正しないとダメでした.


#4 で P として「対角成分がすべて 1 の下三角行列」と書きましたが, これは「上三角行列」とした方が安全です.
ここでひっかかったかも. この辺は A の LDU分解 A = LDU (L, D, U はそれぞれ下三角, 対角, 上三角行列) が念頭にあります. さらに A が対称であれば L = U^t とおけることと, 下三角 (上三角) 行列の逆行列がやはり下三角 (上三角) 行列だってことを使っています.
で, 上のように訂正すると「P の条件から~」のところはさほど難しくないはずです. まず「P の対角成分がすべて 1 である」ということから, 主座小行列式はすべて 1です. さらに, A, D, P の第i 主座小行列をそれぞれ Ai, Di, Pi とおくと P が上三角であることから
Ai = Pi^t Di Pi
と書けます (こっちは成分で確認してみてください). この 2つから det Ai = det Di が得られます.
一応補足しておくと, ここではなんかかっこよさそうなことを書いていますが, やっていることは単純に「平方完成する」だけです. 例えば x^2 + xy + y^2 = (x+y/2)^2 + (3/4)y^2 とかやったりしますけど, これをもっとたくさんの変数についてやっているにすぎません.
    • good
    • 0

あっと, 「直交行列」は不適でした. すみません.


とりあえず適当に書きなぐってみます:
まず, シルベスターの慣性法則より弱い次の命題が簡単に証明できます:
A が正定ならば任意の正則行列 P に対して P^t A P も正定.
もちろん正定/負定/準正定/準負定のいずれでも同じように成り立ちます. ということで, 「うまく P を選んで P^t A P を簡単な形にする」ことを目指します.
と書いておきますが, 実は P として「対角成分がすべて 1 の下三角行列」から適当なものが取れて, このとき P^t A P = D を対角行列にすることができます. しかも, P の条件から A の主座小行列式と D の (対応する) 主座小行列式は値が一致します. つまり
A の主座小行列式は全て正 → D の主座小行列式は全て正 → D は正定 → A は正定 → A の固有値は全て正
です.
準正定の方も同じようにできるかもしれないけどなんとなく怪しい気がするので別ルート:
まず行列式 det A ≠ 0 のときは (0 固有値が存在しないので) 正定の場合に戻ります.
次に行列式 det A = 0 の場合ですが, このとき A のある行 (列) は他の行 (列) の線形結合で表すことができます. この行 (列) は適当に入れ替えることで最後の行 (列) とでき, 「対角成分はすべて 1, 最後の行以外の非対角成分はすべて 0」という適当な行列 P により P^t A P = (A' 0; 0 0) (つまり最後の行と列はすべて 0, それ以外は A と全く同じ) とできます. しかも, 形から明らかなように
A' が準正定 → P^t A P が準正定 → A が準正定
で, ここで帰納法を使えば若干弱い条件のもとで準正定の方が示せます.
    • good
    • 0
この回答へのお礼

返信が非常に遅くなってすみません。解説有り難うございます。

> P の条件から A の主座小行列式と D の (対応する) 主座小行列式は値が一致します.
色々考えてみたのですが、これは、どのPの条件から、言えるのでしょうか?

お礼日時:2009/09/14 12:24

「実対称行列が直交行列で対角化できる」ことを使っていいなら


・行と列を同時に同じように入れ替えても行列式の値は変わらない
・直交行列で対角化しても行列式の値は変化しない
・行列式は固有値の積
で終わり.
    • good
    • 0
この回答へのお礼

何となく、行と列を対角行列を維持するようにそれぞれについて入れ替えても、行列式の値が変わらないことと、小行列の行列式を結び付けるのかなーということは分かるのですが、どうにもここで躓いています。
どのようにすればいいのでしょうか?

お礼日時:2009/09/08 23:57

抜け有り



(3)Aの行列式=すべての固有値の績
    • good
    • 0
この回答へのお礼

すみません、これらをどのように小行列に利用していけばいいのでしょうか?

お礼日時:2009/09/08 22:15

Aがエルミート行列のとき


(1)固有値がすべて正ならば正値

(2)tr(A)=すべての固有値の和
を使えば良い。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q行列の正定・半正定・負定

行列の正定・半正定・負定について自分なりに調べてみたのですが、
イマイチ良くわかりません。。。
どなたか上手く説明していただけないでしょうか?
過去の質問の回答に

>cを列ベクトル、Aを行列とする。
>(cの転置)Ac>0
>となればAは正定値といいます。
>Aの固有値が全て正であることとも同値です。

とあったのですが、このcの列ベクトルというのは
任意なのでしょうか?
また、半正定は固有値に+と-が交じっていて、
負定は固有値が-のみなのですか?

どなたかお願いしますorz

Aベストアンサー

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列ではないAの固有値がすべて正だからといって、
(cの転置)Ac>0とは限りません。
例えば、
A =
[ 1 4 ]
[ 0 1 ]
とすると、Aは対称行列ではなく、固有値は1です。
しかし、
(cの転置) = [ 1, -2]
とすると、
(cの転置)Ac = -3 < 0
となってしまいます。(実際に計算して確かめてください。)
なので、行列Aが対称行列であるという条件はとても重要です。

また、半正定値の定義は、上の定義で
『ゼロベクトルではない任意の』 --> 『任意の』
と書き直したものです。
このとき、半正定値行列の固有値はすべて0以上です。(つまり0も許します。)
逆に、対称行列の固有値がすべて0以上なら、その行列は半正定値です。

さらに、負定値の定義は、『ゼロではない任意の』ベクトルcに対して
(cの転置)Ac<0
となることです。
固有値についてはもうわかりますね。

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列...続きを読む

Q固有値と固有ベクトル・重解を解に持つ場合の解法

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。)

固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると
A=
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
よって
2x1-x2 = 0
4x1-2x2 = 0
この二つは同一方程式より、x1 = 2x2
任意の定数αをもちいてx1 = αとすれば、
x = αt[1,2]

しかし、答えには、
x1 = αt[1,2]
x2 = βt[1,2] + αt[0,-1]

とありました。なぜなでしょう?
参考にしたページなんかを載せてくれるとありがたいです。

ちなみにこんな問題もありました。
A=
|0 0 1|
|0 1 0|
|-1 3 2|

これは固有値がすべて1になる場合です。
これも解法がのってませんでした。

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくて...続きを読む

Aベストアンサー

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n次の正方行列を相手にしてる場合は
n=dim(Im(A-λI))+dim(Ker(A-λI))
=rank(A-λI) + dim(Ker(A-λI))
だから
固有空間の次元
= dim(Ker(A-λI))
= n - rank(A-λI)

したがって,
A=
|1 -1|
|4 -3|
のとき,λ=-1とすれば
A-λI= <<<--- 質問者はここを書き間違えている
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
だから,rank(A-λI)=1
よって,固有空間は1次元
だから,本質的に(1,2)以外に固有ベクトルはないのです.
(0,-1)が固有ベクトルではないことは容易に確認できます.

A=
|0 0 1|
|0 1 0|
|-1 3 2|
の場合も同様.A-λIのランクを計算すれば2だから
固有空間の次元は1で,計算すれば(1,0,1)を固有ベクトルと
すればよいことが分かります.

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n...続きを読む

Q「ノルム、絶対値、長さ」の違いについて

あじぽんと申します。よろしくお願いします。

ベクトルや複素数などに出てくる「ノルムと絶対値と長さ」というのは同じことを違う言葉で表現しているのでしょうか?
手元にある書籍などには全てが同じ式で求められています。
同じ式で表現されていても意味は少しづつ違っていたりするのでしょうか?

よろしくお願いします。

Aベストアンサー

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して定義できます。
数に対しては「長さ」という言い方はあまり聞かないと思います。
例えば、「3」の長さというような言い方は耳になじまないと思います。
一方、ベクトルの場合は、「矢印」という「線」になりますので「長さ」が定義できます。



最後の「ノルム」は、線形空間に対して定義できます。(もちろん実数、複素数やベクトルも線形空間です)
ノルムの条件を満たせばノルムになるため、複数のノルムが考えられます。
そのため、「(1,1)というベクトルに対するノルムは?」
という質問に対しては、「どのノルムを使うか?」という条件が欠けているため厳密に言うと「解答はできません」。
例としてよく扱われるノルムは「ユークリッドノルム」と言われ、通常のベクトルの長さと等しくなります。

ベクトルに対するノルムでは、「最大値ノルム」というのが他の例としてよく使われます。
これは、ベクトルの各要素の最大値で定義されます。
(例:(3,1,5)というベクトルの最大値ノルムは、3つの数字の最大値である5になります)

ノルムというと、線形空間であれば定義できるため、
f(x) = 3x^2+5x
という数式に対するノルムというのも考えられます。
(数式は、定数倍したり、足し算したりできますよね)
数式に対して「絶対値」とか「長さ」と言ってもピンと来ないですよね。

しかし、まだやられていないかもしれませんが、数式に対するノルムというのは存在します。


そうすると、なんでこんなんがあるねん。って話になると思います。

ここで、ベクトルに対してある定理があったとします。

それがさっきのような数式など他の線形空間でも成り立つんだろうか?
というのを考えるときに「ノルム」の登場です。

その定理の証明で、「ベクトル」として性質を使わずに「ノルム」の性質だけを使って証明ができれば、
それは「ベクトル」に対する証明でなくて「ノルムを持つもの」に対する証明になります。
(ちょっと難しいかな?)


このようにして、定理の応用範囲を広げるために「長さ」や「絶対値」の考え方をベクトルだけでなく「線形空間」という広い考え方に適用できるようにしたのが「ノルム」になります。

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して...続きを読む

Q線形・非線形って何ですか?

既に同じようなテーマで質問が出ておりますが、
再度お聞きしたく質問します。

※既に出ている質問
『質問:線形、非線型ってどういう意味ですか?』
http://oshiete1.goo.ne.jp/kotaeru.php3?q=285400
結局これを読んでもいまいちピンと来なかった...(--;


1.線形と非線形について教えてください。
2.何の為にそのような考え方(分け方)をするのか教えてください。


勝手なお願いですが、以下の点に留意いただけると大変うれしいです。
何せ数学はそんなに得意ではない人間+歳なので...(~~;

・わかりやすく教えてください。(小学生に説明するつもりぐらいだとありがたいです)
・例をあげてください。(こちらも小学生でもわかるような例をいただけると助かります)
・数式はなるべく少なくしてください。

『そんな条件じゃ説明できないよー』という方もいると思いますが、どうぞよろしくお願いいたしますm(__)m

Aベストアンサー

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=A(一定)

という規則が成り立つからです。

xやyの例としては昨日の例で言う例1だとxがガムの個数、yが全体の金額、例2だとxが時間、yが走った距離です。

この規則が何で役に立つかというと、式をちょっと変形すると、

(yの増加量)=A×(xの増加量)・・(1)

ということがわかります。つまり、Aの値さえわかれば、xが増えたときのyの値が容易に推測できるようになるわけです。


ここで「Aの値さえわかれば」と書いていますが、この意味を今から説明します。

自然界の法則を調べるためには何らかの実験を行います。例えば、りんごが木から落ちる運動の測定を行います。
ここから質問者様がイメージできるかわかりませんが、りんごは時間が経つにつれて(下に落ちるにつれて)落下するスピードが速くなるんです。今、実験として、1秒ごとにりんごのスピードを測定したとします。そしてその結果をグラフにプロットしていくと、直線になることがわかります。(ここがわかりにくいかもしれませんが、実際に実験を行うとそのようになるのです)

数学の問題のように初めから「時速100kmで走る」とか「1個100円のガム」とかいうことが与えられていれば直線になることはすぐにわかります。
しかし、自然界の法則はそうもうまくいきません。つまり、実験を行ってその結果をプロットした結果が直線状になっていたときに初めて「何らかの法則があるのではないか」ということがわかり、上で書いた「Aの値さえわかれば」の「A」の値がプロットが直線状になった結果、初めてわかるのです。

そして、プロットが直線状になっているということは、永遠にそうなることが予想されます。つまり、今現在はりんごが木から落ちたときしか実験できませんが、その結果を用いて、もしりんごが雲の上から落としたときに地面ではどのくらいのスピードになるかが推測できるようになるわけです。ここで、このことがなぜ推測できるようになるかというと、(1)で書いた関係式があるからです。このように「なんらかの法則があることが推測でき、それを用いて別の事象が予言できるようになる」ことが「線形」が重要だと考えられる理由です。

しかし、実際に飛行機に乗って雲の上からりんごを落としたらここで推測した値にはならないのです。スカイダイビングを想像するとわかると思いますが、最初はどんどんスピードが上がっていきますが、ある程度でスピードは変わらなくなります。(ずっとスピードが増え続けたら、たぶんあんなに空中で動く余裕はないでしょうか??)つまり、「線形から外れる」のです。

では、なぜスピードが変わらなくなるかというと、お分かりになると思いますが、空気抵抗があるからなんですね。(これが昨日「世の中そううまくはいかない」と書いた理由です)つまり、初めは「線形」かと思われたりんごを落とすという実験は実際には「非線形」なんです。非線形のときは(1)の関係式が成り立たないので、線形のときほど容易には現象の予測ができないことがわかると思います。


では、非線形だと、全てのことにおいて現象の予測が難しいのでしょうか?実はそうでもありません。例えば、logは非線形だということをNo.5さんが書かれていますが、「片対数グラフ」というちょっと特殊な形のグラフを用いるとlogや指数関数のグラフも直線になるんです。つまり、普通のグラフでプロットしたときに「非線形」になるため一見何の法則もないように見えがちな実験結果が「片対数グラフ」を用いると、プロット結果が「線形」になってlogや指数関数の性質を持つことが容易にわかり、それを用いて現象の予測を行うことが(もちろん単なる線形よりは難しいですが)できるようになるわけです。


これが私の「線形」「非線形」の理解です。つまり、

1) 線形の結果の場合は同様の他の事象の推測が容易
2) 非線形の場合は同様の他の事象の推測が困難
3) しかし、一見非線形に見えるものも特殊な見方をすると線形になることがあり、その場合は事象の推測が容易である

このことからいろいろな実験結果は「なるべく線形にならないか」ということを目標に頑張ります。しかし、実際には先ほどの空気抵抗の例のように、どうしても線形にはならない事象の方が世の中多いんです。(つまり、非線形のものが多いんです)

わかりやすいかどうかよくわかりませんが、これが「線形」「非線形」を分ける理由だと思っています。

やっぱり、「線形の方がなんとなくわかりやすい」くらいの理解の方がよかったですかね(^^;;

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=...続きを読む

Q2変数テイラー展開が分かりません。

見ていただきありがとうございます。

問題はこちらです。
次の関数f(x,y)のx=0、y=0におけるテイラー展開を3次の項まで求めよ。

f(x,y)=1/ルート(4ーx^2ーy^2)

解き方、解答ともに分かりません。

もし分かる方がいましたら回答よろしくお願いします。

Aベストアンサー

以下の参考URLに定義式と解き方の例がありますので、よく読んでやってみて下さい。
http://markun.cs.shinshu-u.ac.jp/learn/biseki/no_9/cont09_3.html
http://www.f-denshi.com/000TokiwaJPN/10kaisk/100ksk.html
http://gandalf.doshisha.ac.jp/~kon/lectures/2005.calculus-II/html.dir/node35.html
ただ、ひたすら、3階までの偏導関数を求めてx=y=0を代入し、定義式に代入するだけです。

やってみて分からなければ、やった途中計算を書いたうえで、行き詰ってわらない箇所の質問して下さい。

Q絶対値の微分

|x|/(x^2+1)の導関数を求めよ。

絶対値の微分がわかりません!教えてください(m__m)

Aベストアンサー

f(x)=|x|/(x^2+1)
x>0のとき
f'(x)=(1-x^2)/(x^2+1)^2
x<0のとき
f'(x)=(x^2-1)/(x^2+1)^2
x=0のとき
右微分係数
f'+(0)=lim_{x→+0}{f(x)-f(0)}/x=lim_{x→+0}1/(x^2+1)=1
左微分係数
f'-(0)=lim_{x→-0}{f(x)-f(0)}/x=lim_{x→+0}-1/(x^2+1)=-1
f'+(0)=1≠-1=f'-(0)
だから
x=0のとき微分不可能だから導関数は存在しない

Q凸集合

次の問題を教えて下さい。基本的ですいません。
よろしくお願いします。

----------------------------------
以下の集合が凸集合であることを示せ
A={ x^2+y^2≦r^2 }∈R^2 (rは定数)
B={ x^2+y^2≦z } ∈R^3
----------------------------------

Aベストアンサー

(1)
0≦r∈R
A={(x,y)∈R^2|x^2+y^2≦r^2}
{(a,b),(c,d)}⊂A
0≦t≦1
(x,y)=(1-t)(a,b)+t(c,d)
とすると
a^2+b^2≦r^2
c^2+d^2≦r^2
(a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2≧0

x^2+y^2
={(1-t)a+tc}^2+{(1-t)b+td}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ac+bd)+t^2(c^2+d^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(c^2+d^2)}+t^2(c^2+d^2)
={(1-t)√(a^2+b^2)+t√(c^2+d^2)}^2
≦r^2

(2)
B={(x,y,z)∈R^3|x^2+y^2≦z}
(a,b,c)∈R^3
(d,e,f)∈R^3
0≦t≦1
(x,y,z)=(1-t)(a,b,c)+t(d,e,f)
とすると
a^2+b^2≦c
d^2+e^2≦f
(a^2+b^2)(d^2+e^2)-(ad+be)^2=(ae-bd)^2≧0

x^2+y^2
={(1-t)a+td}^2+{(1-t)b+te}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ad+be)+t^2(d^2+e^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(d^2+e^2)}+t^2(d^2+e^2)
≦c(1-t)^2+2(1-t)t√(cf)+ft^2
=(1-t)c+tf-t(1-t)(√c-√f)^2
≦(1-t)c+tf
=z

(1)
0≦r∈R
A={(x,y)∈R^2|x^2+y^2≦r^2}
{(a,b),(c,d)}⊂A
0≦t≦1
(x,y)=(1-t)(a,b)+t(c,d)
とすると
a^2+b^2≦r^2
c^2+d^2≦r^2
(a^2+b^2)(c^2+d^2)-(ac+bd)^2=(ad-bc)^2≧0

x^2+y^2
={(1-t)a+tc}^2+{(1-t)b+td}^2
=(1-t)^2(a^2+b^2)+2(1-t)t(ac+bd)+t^2(c^2+d^2)
≦(1-t)^2(a^2+b^2)+2(1-t)t√{(a^2+b^2)(c^2+d^2)}+t^2(c^2+d^2)
={(1-t)√(a^2+b^2)+t√(c^2+d^2)}^2
≦r^2

(2)
B={(x,y,z)∈R^3|x^2+y^2≦z}
(a,b,c)∈R^3
(d,e,f)∈R^3
0≦t≦1
(x,y,z)=(1-t)(a,b,c)+t(d,e,f)
とすると
a^2+b^2≦c
d^2+e^2≦f
(a^2+b^2)(d^2+e^2)...続きを読む


人気Q&Aランキング

おすすめ情報