会員登録で5000円分が当たります

重力加速度g、質量m、紐の長さl、空気抵抗無視。

単振り子の運動方程式はこうなりますよね。
mlθ"=-mgsinθ
これがよくわからないのです。
どういう座標系についての運動方程式なのですか?

軌道にそってx軸を定めると
θl=x
mx"=-mgsinθ  軌道に沿った運動方程式?
⇔mlθ"=-mgsinθ  どういう座標系の運動方程式なの?
そしてこれの一般解はどういう風になりますか?
初期条件としてt=0でθ=φとします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

まず座標系についてのお話をします。

下の図をご覧下さい。

  y
  ↑
  ・→x
   \
   →\
   θ \
      ●

振子の支点を・、先端に吊るされたおもりを●で表しています。支点の位置をxy座標の原点に取るならば、鉛直からの振れ角をθとして
x= l sinθ  (1)
y= -l cosθ  (2)
であることは既にご承知かと思います。
このように置くこと自体が、(x, y)の直交座標系から(l, θ)の極座標系に移行していることに相当します。ただほとんど自明なことなので「極座標に置き換えて」などとわざわざ断っていないわけです。
極座標系に移行したことで問題の本質はx(t), y(t)の代わりにl(t), θ(t)を求めることに帰着します。大抵の場合はひもは伸び縮みしないと仮定しますのでlについて解く必要はなく、θについてのみ解くことになります。その方程式が
ml(d^2θ/dt^2)= -mg sinθ  (3)
なわけです。

しかしこの方程式は初等関数の範囲では解くことが出来ません。そこで初等物理の範囲ではθが小さい場合に限って問題を考えることにし、
sinθ≒θ  (4)
の近似を行って解きます。このとき(3)は
ml(d^2θ/dt^2) = -mg θ  (5)
となります。これの解き方はいろいろあります。線形微分方程式の理論を知っていれば解は直ちに
θ= C sin{√(g/l) t+α} ←Cは定数  (6)
だと分かります。αはC sinα=φを満たす定数です。
2階の微分方程式ですが初期条件が「t=0でθ=φ」の一つしか与えられていないので、定数が一つ未定のまま残ります(*1)。

愚直に微分方程式を解くのであれば下のようにやります。
l(d^2θ/dt^2)(dθ/dt) = -g θ(dθ/dt)
d/dt {(dθ/dt)^2} = -(g/l) d/dt (θ^2) ←両辺に(dθ/dt)をかけた上で、積の導関数の公式((y^2)'=2y y')を逆に使った
(dθ/dt)^2 = -(g/l) θ^2 +C1 ←C1は積分定数
dθ/dt = √{-(g/l) θ^2 +C1}  (7)
ここでθ=√(l/g)√C1 sinψと変数を変換すると
dθ/dt = √C1√(1-sin^2 ψ)  (8)
を経て
√(l/g)√C1 cosψ dψ = √C1 cosψ dt  (9)
と変形でき、両辺を積分することで
√(l/g) ψ= t+C2 ←C2は積分定数  (10)
を得ます。θの表式に戻すと
θ=√(l/g)√C1 sin{√(l/g) (t+C2)}  (11)
となります。これは本質的に(6)と同じ式です。初期条件「t=0でθ=φ」を代入することで
φ=√(l/g)√C1 sin{√(l/g)C2}  (12)
を得ます。これを使うと(11)からC1, C2のいずれかを消去できます。初期条件がもう一つあれば運動は一意に定まります(脚注参照)。

もちろん、「軌道に沿ってx軸を定める」でも解けます。この場合の運動方程式は
m(d^2 x/dt^2)= -mg sin(x/l)  (13)
となります。本質的に(3)と同じであることは申し上げるまでもなく、同様に解くことができます。

考え方は上記でよいはずですが中間で計算ミスがあるかも知れませんので、ONEONEさんご自身でも確認しながら読んで頂けると幸いです。

*1 もし初期条件が「t=0でθ=φまでおもりを持ち上げて手を放す」という意味であれば、「θの最大値はφ(厳密には|φ|)」という条件が新たに加わるので運動は一意に定まります。この場合はφsinα=φからα=π/2、よってθ=φsin{√(g/l) t+(π/2)}=φcos{√(g/l) t}と求めることができます。
    • good
    • 2
この回答へのお礼

こんな夜遅くにこんなに長々とかいせついただきありがとうございます。
極座標系なのですね。
初期条件が「t=0でθ=φ」だけではだめなのですね。まだまだ青いですな。「t=0でθ=φまでおもりを持ち上げて手を放す」と言わないといけないのですね。
そりゃそうだ。と解説見て納得。
それにしてもホントに一般人ですか?すごい解説がステキ。

お礼日時:2003/06/29 08:53

No.2のhagiwara_mです。

表現のまずかったところを訂正させて下さい。

[第3段落]全部:「しかし、~からです。」を以下に差し替えます。

しかし、重りが糸から受ける力(張力)は、運動方程式の解と独立に与えられるものではありません。張力を糸の微小な伸びの関数と見て運動方程式中に記述することは可能かも知れませんが、考慮する必要のない運動の要素(糸の微小伸縮に付随する効果)のために式とその扱いが無用に複雑になるだけです。


[第4段落]はじめの2行:「ただし、~なっています」も以下に換えて下さい。

ただし、張力が満たすべき条件は決まっています。重りと糸を止めた中心からの距離が l 以内に留まるような、そういう強力なフィードバックがかかった力になっています。


[第5段落]最後の方:
「鉛直下方からのひらき角θ」→「鉛直下方を基準にした方位角θ」
    • good
    • 3
この回答へのお礼

いやどうもありがとうございます。
詳しいですな。理解に苦しむところもありましたが、まあ、大体理解できたかな?
言わんとしたことはわかったと思う。
少し学ぶのに早すぎたかなと思ったしだいであります。

お礼日時:2003/07/02 22:37

「よく分からないなぁ」と思ったことのある経験者として補足アドバイスします(疑問の主旨からずれているときは無視願います)。



運動方程式は、基本的には、慣性系カーテシアンに記述される3次元の(微分)方程式です。基本的には、単振り子についても、重りに作用する合力ベクトルをFと表わし、 m(d^2r/dt^2)=F としたものが運動方程式です。この解が、円弧にそった振動運動(初期条件によっては糸が弛むこともある)になるはずです。

しかし、重りが糸から受ける力は、解を知る前に予め表わすことはできません。張力は、糸の微小な伸びの関数になっているはずですが、その伸び自体が、解としての運動を知らなければ決まらないからです。

ただし、張力が満たすべき条件は決まっています。糸の長さがlより(ほとんど)伸びることがないような、そういう力になっています。このような条件を運動の拘束条件と言います。一般に、拘束条件があると、運動を記述するための変数の数、つまり自由度が減ります。単振り子の場合の座標自由度を考えます。糸が弛む可能性まで考えるなら3のままです。弛まない初期条件の範囲なら2となり、例えば空間の方向角 θ,φ だけで足りることになります。さらに、初速が、回転中心と初期位置を含む鉛直面内にある条件を加えると、自由度は1になり、座標変数は1個にすることができます。この1個の座標は、必ずしも○○座標のように名前がついているものに限らず、色々なとり方が可能です。数学的扱いが容易になるものを選べばいいわけです。

ご質問の単振り子で、自由度1になる場合の簡単な座標の選び方が、鉛直下方からのひらき角θを使うものなのです。

さてここで、運動方程式の接線成分と法線成分への分離という考え方を使います。この分離は一般に、

m(dV/dt)=F<接線>
mV^2/ρ=F<法線>

となります。ρは曲率半径、Vは速さ(=ρ(dθ/dt))です。今の単振り子の場合を当てはめると、重力の接線方向成分が -mgsinθ、法線方向の成分 -mgcosθ を使って、

m(dV/dt)=-mgsinθ
mV^2/l=T-mgcosθ

上の式のVを l(dθ/dt) に戻せば、ご質問にある式 ml(d^2θ/dt^2)=-mgsinθ になり、これから解 θ(t)が決まります。結果を下の式に入れると張力 T が決まります。

ご質問の運動方程式は、上に述べたようなことを考慮して導かれた、拘束条件付き問題についての1自由度広義座標で書かれた運動方程式と言えます。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q振り子の慣性モーメントの求め方

鉄の棒の先に立方体の重りを付けた、振り子の慣性モーメントを求めたいのですが、振り子全体の慣性モーメントの求め方と、鉄の棒と重りのそれぞれの慣性モーメントの求め方を教えてください。よろしくお願いします。

鉄の棒(長さL=275mm、質量m1=42.2g)と立方体(一辺の長さa=30mm、質量m2=226.2g)は以上のようになっています。
できれば詳しく教えていただけたら幸いです。よろしくお願いします。

Aベストアンサー

慣性モーメントは、
回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E3%83%A2%E3%83%BC%E3%83%A1%E3%83%B3%E3%83%88
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性モーメントだと思うので、積分によって求めた、鉄の棒と立方体の重心周りの慣性モーメントを用いて、運動エネルギーを出します。

平面上の振り子運動だと思うので、
角度をθ、重心までの距離をr1,r2などと置いて、それぞれの重心のx座標、y座標をr、θで表します。
速度v1,v2を微分によって求めます。

ここで、運動エネルギーは、並進の運動エネルギーと回転の運動エネルギーの和なので、
E = 1/2 mv^2 + 1/2 Iω^2 (*)
の形であらわされます。

これを用いて、振り子の運動エネルギーを出して、この運動エネルギーを
E=1/2 Iω^2の回転のみのエネルギーとした時の、Iにあたる量が振り子の慣性モーメントです。
(振り子の回転中心は動かないので上記の形にかけます)
(鉄の棒と立方体は重心中心の慣性モーメントなので、重心が動くので(*)の形でかけます)

慣性モーメントは、
回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E3%83%A2%E3%83%BC%E3%83%A1%E3%83%B3%E3%83%88
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性...続きを読む

Q剛体振り子の周期

剛体振り子の運動方程式 I(θの2回微分)=-Mghθ
から、普通に
周期T=2π√(I/Mgh)
と教科書に書いてあるのですけど、この周期Tはどうやって求めたのでしょう?計算の仕方がわからないので教えてください☆お願いします!
T=2π/ωと、ω=(θの微分)を用いるのはわかるんですけど・・・。

Aベストアンサー

これはθに関する微分方程式を解かなければいけません。
すなわち
dθ^2/dt^2 = -Aθ
(A=Mgh/I)
これは、よく教科書に書いてある形の微分方程式なのですが、解き方をここに書くのは、ちょっと面倒なのでご勘弁ください。

代わりに、方程式から周期を求める簡易な方法を紹介します。

θはtの三角関数になることは、わかっているものとします。

そうすると
θ = a・sin(ωt+c)
tで一回微分すると
dθ/dt = ab・cos(ωt+c)
もう1回tで微分すると
I = dθ^2/dt^2 = -a・ω^2・sin(ωt+c)

これらを当初の方程式に代入すれば
-a・ω^2・sin(ωt+c) = -A・a・sin(ωt+c)
よって
ω=√A=√(Mgh/I)
T=2π/ω=2π√(I/Mgh)

Q<<単振り子>>最下点通過のときの糸の張力?

はじめまして。高校生のlemon9です。
高校物理の質問があって投稿しています。
【問題】
糸の一端に物体をつけ他端を天井の一箇所に固定して、
糸が鉛直方向と60゜(=θ)を成す位置から振らせる。
(単振り子の状態)
物体が最下点を通過するとき、物体に働くすべての力とその大きさは?


という問題で、働く力は、
●糸の張力=T  ●重力=mg
ここまでは分かりました。

しかし、模範解答によれば、
"この2力の間には、T=2mgなる関係が存在する"
ということで、そこが分からず困っています。
学校の先生は高校物理IIの知識を使うのだとおっしゃっていたのですが、自分の持ち合わせの教材が物理Iまでのものなので、解決することが出来ませんでした。

さらに、θ=90゜のときの最下点の張力についても教えて頂けたら嬉しいです。お願いいたします(__)

Aベストアンサー

 まず、振り子の糸のの長さを L 最下点での速度を v とすると、力学的エネルギーの保存から
(1/2)mv^2=mg(1/2)L
となり、後の計算のためにこれを mv^2=mgL と変形しておきます。

 最下点では半径 L の円運動をしており、おもりには mv^2/L だけの向心力(上向き)が働いています。(ここは 物理II の内容です)

 この向心力は、おもりに働く張力T(上向き)と重力mg(下向き)によって生じているので、

T-mg=mv^2/L

となります。この式に先の mv^2=mgL を使って変形すれば T=2mg が得られます。

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qボルダの振り子 慣性モーメント

ボルダの振り子で、金属球の質量をm、半径をa、
ナイフエッジから金属球までの長さをlとするとき、
支点回りの慣性モーメントIが
I=2ma^2/5+m(l+a)^2
となるのがわかりません。
この式の導き方を教えていただきたいです。

Aベストアンサー

平衡軸の定理を使っています。
平衡軸の定理とは、ある剛体を考えた時に、
その剛体の重心の周りの慣性モーメントをI(G)とすると、重心から距離hだけ離れた点、の周りの
慣性モーメントIは、I=I(G)+Mh^2で与えられる、
ということです。Mは剛体の質量です。ご質問の場合、I(G)というのは金属球の中心の周りの慣性モーメントです。
この値が、半径aとして、2/5ma^2となります。
その重心(中心)から、距離lだけ離れたナイフエッジ
における慣性モーメントは、平衡軸の定理を使うと
I=I(G)+mh^2=2/5ma^2+m(a+l)^2になるのです。

平衡軸の定理については、定理ということでそのまま
用いて構いません。式の導出が厄介だからこそ、定理として造られているのです。定理の導出まで知りたければ、力学の教科書をみれば分かります。

球の慣性モーメントについても、導出はけっこうやっかいです。球の重心の周りの慣性モーメント
がI(G)=2/5ma^2です。この導出も知りたければ、力学の教科書を見た方が速いです。もしここに書き込むと
かなりゴチャゴチャします。

平衡軸の定理を使っています。
平衡軸の定理とは、ある剛体を考えた時に、
その剛体の重心の周りの慣性モーメントをI(G)とすると、重心から距離hだけ離れた点、の周りの
慣性モーメントIは、I=I(G)+Mh^2で与えられる、
ということです。Mは剛体の質量です。ご質問の場合、I(G)というのは金属球の中心の周りの慣性モーメントです。
この値が、半径aとして、2/5ma^2となります。
その重心(中心)から、距離lだけ離れたナイフエッジ
における慣性モーメントは、平衡軸の定理を使うと
I=I(G)+mh^2=2/5ma^2+m...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q円盤の慣性モーメントが求めれません。

面密度ρの一様な円盤の中心周りの慣性モーメント

J=(mR^2)/2
となるのですがどうしてなるのか分かりません。

よろしくお願いします!

Aベストアンサー

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

で求まります。実際にやってみます。
dA=π(r+dr)^2-πr^2
=π(r^2+2rdr+dr^2-r^2)
=π(2rdr+dr^2) (5)

となるんですが、drはめっちゃ小さいんで2乗の項は無視します。
dA=2πrdr (6)

ですね。この式(6)を式(3)に代入します。
dm=2πρrdr (7)

式(7)を式(2)に代入します。
J=∫r^2・2πρrdr
=2πρ∫r^3dr (8)

見にくいんで書きませんでしたが、rの積分区間は0~Rです。
回転軸から端っこまでですから♪
積分を実行すると、
J=(πρR^4)/2 (9)

になります。
ここで、円盤の質量mは次式で与えられます。
m=πρR^2 (10)

式(10)を式(9)に代入すれば出来上がりです♪
J=(mR^2)/2 (11)

慣性モーメントの定義から入りましょう。
回転軸からrだけ離れた位置にある微小要素の慣性モーメントdJは次式で与えられます。
dJ=r^2dm (1)

ここで、dmは微小要素の質量です。
この円盤の慣性モーメントJは、円盤全域でdJを足し合わせれば(積分すれば)求まるわけです。
つまり、
J=∫dJ=∫r^2dm (2)

となるわけです。
ここで、dmは次のように表されます。
dm=ρdA (3)

ρは面密度、dAは円盤の微小要素の面積です。
次に、dAをrを使って表すことを考えましょう。
dA=(半径r+drの円の面積)-(半径rの円の面積) (4)

...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q振り子運動における物体のt秒後の速さと位置について

図がなくわかりにくくて、申し訳ございません。
 支点から物体の重心までの距離をr、物体に働く重力加速度をg、鉛直線と糸のなす角度をθ、物体の速さをv、物体の接線方向に働く重力加速度aとすると
 a=gsinθ・・・(1)
 また、角速度をαとするとα=dθ/dt、角加速度をβとするとβ=dα/dt、β=d^2θ/dt^2となります。また、v=rα、a=rβと表せるので、(1)より
 rβ=gsinθ
 となります。ここで、β=d^2θ/dt^2より
 rd^2θ/dt^2=gsinθ となると思うのですが、ここから上手く展開できません。
 どなたか別の方法でも構いませんので、アドバイスよろしくお願い致します。

Aベストアンサー

ん!???
マルチポストですね。
同じの2つ質問すると、片っ方が、ここのスタッフに削除されちゃうんですよ。

私、せっかく書いたのが消されるのは嫌なので、こちらにも書いときます。


ーーーーーーーーーーーーーーーーーーー

まず、
振り子は、物体の位置と復元力とは逆方向
つまり、a と θ は逆方向ですので
a=-gsinθ
です。


θが小さいとき、
sinθ ≒ θ
という近似が成り立ちます。(ただし、θの単位はラジアン)

つまり、
a = -gθ
です。

物体の変位xは、(位置は)θに糸の長さrを掛けて
x=rθ

です。
加速度aはxを時間tで2回微分したものなので、
a = rdθ^2/dt^2 = -gθ

ここで、θはtの三角関数であることが既知であれば
θ=sin(ωt+C)
(ωは、角速度です。)
1回微分 dθ/dt = ω・cos(ωt+C)
2回微分 dθ^2/dt^2 = -ω^2・sin(ωt+C)

上述の通り
a = rdθ^2/dt^2 = -gθ
ですので

a = -r・ω^2・sin(ωt+C)=-gsin(ωt+C)

よって
rω^2 = g
となります。

ここまで来れば、大丈夫なのでは。



なお、複素数の指数関数を知っていれば
sin(ωt+C)より、e^i(ωt+C)
のほうが楽なんですけどね・・・

ん!???
マルチポストですね。
同じの2つ質問すると、片っ方が、ここのスタッフに削除されちゃうんですよ。

私、せっかく書いたのが消されるのは嫌なので、こちらにも書いときます。


ーーーーーーーーーーーーーーーーーーー

まず、
振り子は、物体の位置と復元力とは逆方向
つまり、a と θ は逆方向ですので
a=-gsinθ
です。


θが小さいとき、
sinθ ≒ θ
という近似が成り立ちます。(ただし、θの単位はラジアン)

つまり、
a = -gθ
です。

物体の変位xは、(位置は)θに...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング