![](http://oshiete.xgoo.jp/images/v2/pc/qa/question_title.png?08b1c8b)
ここでは、自分の計算の速さに自身がある人、または他人から早いといわれたことがある人のみご回答おねがいします。
暗算が遅く、とても計算ミスが多いです。
しかも、引き算の「繰り下げ」の概念がよくわかっておりません。
だから、テストなどで計算ミスをすることが多々ありました。
どうすれば計算が早くなるでしょうか。
標準の速さでは意味がありません。早く、かつ正確になりたいです。
どうしてその計算速度を手に入れたのでしょうか。教えてください。
また、計算力がある程度ついたら、インド式算数というものにも挑戦してみようと思うのですが、
いかがお考えでしょうか。
No.8ベストアンサー
- 回答日時:
#4 に完全に同意.
「速いけど間違ってる」というのは無意味なので, まずは「ゆっくりでいいから正確に計算できる」ようになること. 「速く計算できる」ようになるのはそのあとでいい. 限界はあっても, 慣れれば勝手に速くなる.
あと, #6 のような奴とか「インド式」なんてのは見なくていい. 所詮は小手先のテクニックに過ぎない. 余裕があれば取り組んでもいいけど, 今の段階では無視すべし. 本当に「計算力」がついたらあんなのやらなくてもそこそこ安定した速度が出せる.
No.7
- 回答日時:
計算ミスを多発する者が、暗算する方がおかしいでしょう。
民主党じゃないんだから。素直に筆算すればいいのです。引き算の繰り下げがどうとか言うレベルならば、
計算を正確に行う事から始めましょう。もちろん筆算でですね。
正確にできないのに、スピードを求めてどうするのか。
これがクルマの運転ならば、派手に事故を起こすだけです。
その発想自体がロジカルではない。即ち、暗算には向いていない。
寧ろ、何の為に高速な計算力を必要としているのか。
その目的から考えるべきである。
まあ、標準レベルまで至らなければ、数をこなすしかない。
#6の方法は、数学をマトモに理解できるようになってからだ。
引き算がどうとか言う人間には、早すぎる。
No.6
- 回答日時:
2位数までの乗法ならば,乗法公式を利用するとよい。
(1)(a+b)²=a²+2ab+b² 例 21²=(20+1)²=400+40+1=441
(2)(a-b)²=a²-2ab+b² 例 19²=(20-1)²=400-40+1=361
(3)(a+b)(a-b)=a²-b² 例 21×19=(20+1)(20-1)=400-1=399
(4)(ax+b)(cx+d)=acx²+(ad+bc)x+bd 例 21×32=(20+1)(30+2)=600+70+2=672
No.5
- 回答日時:
私はそろばんをやっていたので、暗算は周囲が理解出来ないぐらい早いですが、既に高校生とのことなので、今さらそろばんを薦めても非現実的ですね・・・。
ただし私はそろばん式の暗算(頭で数字をそろばんの玉に置き換える方法)ではなく、以下のような感じで計算しています。
17893+589
という計算の場合なら小さい数字の頭の位(今回なら百の位)より上の部分を計算します。
178+5
を計算して183
を覚えて置きます。
次に十の位を計算して9+8=17
これを上記に足して
1847と覚えておいて
同様に位置の位を足して3+9=12
これを足して18482
と答えが出ます。
引き算も基本は同じです。
17893-589なら
173
1731
17304
※最後の部分は17310+(-6)と計算しています。
以上の方法は、「長い桁の数字を覚えておける」ということさえクリア出来ればO.K.です。私は小さい時にそろばんで長い桁の数字に慣れ親しんだので、上記の桁ぐらいの計算なら1秒ぐらいしか掛かりません。
なお、日常的には上記の通りですが、「絶対に間違ってはいけない」場合は紙にメモします。
足し算17893+589の場合なら
最初に183と書いて3を斜線で消して1847と書いて、7を斜線で消して18482と書くような感じです。斜線で消して続きを上か下かに書くので横一列には並びませんが、メモなのでO.K.です。
※私は設計屋なので、外出先など電卓が無い場合に上記のようなことをやっていますが、今後の人生における実践で云々では無く、純粋にあくまでテスト用なのであれば、やはり普通に筆算する速度を上げるほうをお勧めします。
以上、参考になれば幸いです。
No.4
- 回答日時:
まず、暗算はしないこと。
数学の試験用紙は、たいてい、余白が多くて白っぽいものだが、
その意味は何だか考えよう。
間違わない人は、余白での筆算が整然としていることが多い。
繰り下げに概念もヘッタクレも無い。
筆算の手順を反復練習して、確実に行えるよう慣れておくこと。
習った手順を実行するだけだから、使うのは手と反射神経のみ。
頭は使わない。
インド式は、時間短縮のための小技であって、
できない計算ができるようになる方法ではない。
さあ、練習、練習…
高校生で引き算さえ怪しいようだと、相当リキを入れて練習しなければ
間に合わない。少年は、既にかなり老いかけている。
参考:
http://www.sangan.jp
http://www.keisans.com
http://www.nhk.or.jp/school/keisan/
No.3
- 回答日時:
ごめんなさい。
No.2訂正
835-123
の場合、
一の位:5-3
十の位:3-2
百の位:8-1
をやるわけです。
それぞれ計算すると、
一の位:5-3=2
十の位:3-2=1 (30-20=10)
百の位:8-1=7 (800-100=700)
やから、計算結果は
2+10+700=712
です。
申し訳ありません。
No.2
- 回答日時:
僕も暗算めっちゃ遅いです…
そろばんとか公文とか、特別な計算の訓練も全くしてません。
なので、安っぽいテクニックしかありませんが…
例えば、
253-98
の場合、98を引くのがムズいんで、100を引いてから2を足せば簡単です。
あと…5で割る時は10で割ってから2倍するとか、5を掛ける時は10倍してから2で割るとか…
今、思いつくのはそんなもんですかね。
多分、色々工夫してやってる…はず(?)ですけど、例題がないんであんま思いつかないですわ。
繰り下げが何をやってるかですが…
筆算ってのは、同じ桁どうしで計算して後で和をとるってのが基本的な考え方です。
なので、
835-123
の場合、
一の位:8-3
十の位:3-2
百の位:5-1
をやるわけです。
それぞれ計算すると、
一の位:8-3=5
十の位:3-2=1 (30-20=10)
百の位:5-1=4 (500-100=400)
やから、計算結果は
5+10+400=415
になるんですね♪
せやけど、
253-98
の場合、
一の位:3-8
十の位:5-9 (50-90)
百の位:2-0 (200-0)
になります。
一の位の3-8が引き算できないんで、十の位から10だけ借ります。すると…
一の位:13-8
十の位:4-9 (40-90)
百の位:2-0 (200-0)
になります。
これで一の位は計算できますね。
でも、十の位も4-9が引き算できないんで、百の位から100だけ借ります。すると…
一の位:13-8
十の位:14-9 (140-90)
百の位:1-0 (100-0)
になります。
これで十の位も計算できます!!
計算すると、
一の位:13-8=5
十の位:14-9=5 (140-90=50)
百の位:1-0=1 (100-0=100)
やから、計算結果は、
5+50+100=155
になります♪
筆算で負の数は出てこないんで、隣の桁から数を借りてくるんです。
ホントは負の数になるのを恐れずに計算しても同じ答えになります↓↓
253-98
の場合、
一の位:3-8=-5
十の位:5-9=-4 (50-90=-40)
百の位:2-0=2 (200-0=200)
…で、計算結果は、
-5-40+200=155
って感じです。
…まあ、最後の計算の時点で筆算が要る場合もあるんで、意味ないですが。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 中学校 割り算を解くのが遅いです。商を見当つけるのが苦手で、計算遅くなってしまっていると思います。どのように 7 2023/04/17 14:34
- 数学 22+197のような繰り上がりが発生する足し算を一瞬で計算するにはどのように考えればよいのでしょうか 2 2022/10/06 21:58
- その他(学校・勉強) 難しい計算になる程、計算ミスが起きやすくなるのはadhdとかではない健常者でもそうですか? 自分はそ 3 2022/06/27 18:44
- 物理学 レイノルズ数の導出においての疑問 1 2023/04/16 15:59
- 数学 x=r・cosθの2回微分 θ=ωtとすると? 5 2022/05/10 23:53
- その他(悩み相談・人生相談) ついさっき、とあるスーパーにバイトの面接を受けに行った高1生です。面接はこれとなく普通に終わったので 1 2022/08/23 18:05
- 計算機科学 科学計算においてワークステーションを使うのはなぜ? 7 2023/02/16 19:21
- 統計学 t値の計算方法 1 2022/11/29 18:37
- 物理学 【 物理基礎 2物体の運動方程式 】 問題 写真の図を見て、物体A、Bの加速度の大きさを答えよ。 ま 1 2022/11/30 18:50
- 数学 平均の速さの求め方について質問させて頂きます。 12 2023/08/09 17:13
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一番好きなみそ汁の具材は?
- ・泣きながら食べたご飯の思い出
- ・「これはヤバかったな」という遅刻エピソード
- ・初めて自分の家と他人の家が違う、と意識した時
- ・いちばん失敗した人決定戦
- ・思い出すきっかけは 音楽?におい?景色?
- ・あなたなりのストレス発散方法を教えてください!
- ・もし10億円当たったら何に使いますか?
- ・何回やってもうまくいかないことは?
- ・今年はじめたいことは?
- ・あなたの人生で一番ピンチに陥った瞬間は?
- ・初めて見た映画を教えてください!
- ・今の日本に期待することはなんですか?
- ・集中するためにやっていること
- ・テレビやラジオに出たことがある人、いますか?
- ・【お題】斜め上を行くスキー場にありがちなこと
- ・人生でいちばんスベッた瞬間
- ・コーピングについて教えてください
- ・あなたの「プチ贅沢」はなんですか?
- ・コンビニでおにぎりを買うときのスタメンはどの具?
- ・おすすめの美術館・博物館、教えてください!
- ・【お題】大変な警告
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・最強の防寒、あったか術を教えてください!
- ・歳とったな〜〜と思ったことは?
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
15%増しの計算方法
-
パーセントの計算
-
6畳間は何立方メートル?
-
3分2の計算教えて下さい
-
πがついた整数と普通の整数って...
-
250gを8割と2割に分けると
-
ラジアン値を°′″(度・分・秒)...
-
日にちの計算が解からないらし...
-
パーセンテージの出し方
-
割引や%引きの計算のやり方を教...
-
16進数の乗算について。
-
割引の計算を教えてください。
-
指数計算 2^n-1
-
計算の質問なんですが、 10000×...
-
代金6000万円の5%はいくら...
-
一定倍したある数を元に戻すには?
-
不定積分でのCのつけ忘れ
-
仕事で使う算数の計算が難しいです
-
算数で質問です よろしくお願い...
-
Excelの反復計算がわかりません。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
15%増しの計算方法
-
3分2の計算教えて下さい
-
パーセントの計算
-
1/4メートルの8個分は何メート...
-
前年比の%の計算式を教えてく...
-
日にちの計算が解からないらし...
-
エクセルで関数計算後の値を数...
-
ラジアン値を°′″(度・分・秒)...
-
一定倍したある数を元に戻すには?
-
16進数の乗算について。
-
計算の質問なんですが、 10000×...
-
2の365乗
-
教えて下さい
-
6畳間は何立方メートル?
-
Excelの反復計算がわかりません。
-
指数計算 2^n-1
-
「出来型」と「出来形」の使い...
-
πがついた整数と普通の整数って...
-
250gを8割と2割に分けると
-
毎日10%ずつお金が増える時...
おすすめ情報