「夫を成功」へ導く妻の秘訣 座談会

ベルヌーイの墓石にこの両者が間違って刻まれたエピソードは知っているのですが、そもそもこの二つって見た目の形の上ではどう違うのですか?(式が違うのは当たり前ですが・・・)

渦と渦の間隔?回り方?

このQ&Aに関連する最新のQ&A

墓石」に関するQ&A: 墓石業者を選ぶ時

A 回答 (3件)

 


下図
 
「アルキメデス螺旋と対数螺旋の違いは?」の回答画像1
    • good
    • 0

アルキメデス螺旋


香取信吾螺旋のようです。
中心点はどうなるのだろうか?
式から求められるのか?


対数螺旋
中心点は式から求められそう。
    • good
    • 0

#1に書かれている図をみて思いました。



蚊取り線香の渦と、かたつむり(蝸牛)の渦のイメージになっています。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q等角螺旋(らせん)の3次元的な数式表現

等角螺旋(らせん)の数式表現について教えてください

ひょんなことから等角螺旋形状のモデリングらしきことをすることになったのですが、
これの3次元的な表現方法がよくわかりません。
例えば、牛や羊の角は3次元の等角螺旋構造ではないかと思うのですが、
これを球座標表現、ひいてはxy座標で表現する場合、どのような数式であらわせるのでしょうか?

2次元平面内での表現は 極座標だと
 r = exp(θ)
このとき、螺旋上の点(x,y)は
x = r*cosθ
 y = r*sinθ

とあらわせると思うのですが、
これを3次元空間内で表現する方法がよくわかりません

ご教授いただければ幸いです
よろしくお願いします

Aベストアンサー

「螺旋」には、大別して2種類あります。2次元平面曲線の渦巻き模様であるspiralと、3次元空間曲線であってねじ山のようなhelixです。等角螺旋はspiralの方。描きたいと仰っているのはどうもhelixの方ですから、話が食い違っています。よく「等角らせんは、オウム貝やかたつむり などの殻,ヤギの角などの形」と説明されるのは、モノを2次元図形と見たときの大雑把な話ですから、そのまんま真に受けちゃいけません。

 spirialが等角であるということを2次元極座標(r,θ)で書けば、
dr/dθ= aθ
つまり、仰る通り
r(θ) = exp(aθ)
です。(aは巻きの強さを変える係数です。)
 これを、例えばタニシやでんでん虫やツノの形に立体化するにはどうするか。
 まずは、円筒座標(r,θ,z)を考えると便利そうです。(3次元の極座標じゃだめです。)z軸の方向が螺旋の「軸」になるわけですね。直交座標(x,y,z)に直すにはもちろん、
x = r cosθ
y = r sinθ
とすれば良い。
 さて、θを決めて断面を考える(つまりz軸を含む平面でタニシを切る)と、タニシの「身」が入ってる部分の断面がいっぱい現れますが、どれも相似形をしているでしょう。すると、タニシの「身」が入ってる部分の断面のr方向の寸法は、helixを一周したときのrの増分
r(θ+2π) - r(θ)
に比例すると考えられます。ということは、helixは一周する間に,
タニシの「身」が入ってる部分の断面のz方向の寸法のぶんだけz軸方向にずれていなくてはいけません。ですから、
z = b r(θ)
にしとけば大丈夫です。てことはz = b rですから、このhelixは円錐面の上に存在することがわかります。また、このhelixは、r,zを共に同じ倍率で大きくしたとき、元のhelixと同じである(自己相似)という性質を持っています。

 もちろん、これだけではタニシの「身」が入ってる部分の「中心線」になっているhelixを描いただけですから、この周りにカラを作ってやらなくちゃいけません。
 ここまでのr, zはhelix上の点の座標の意味でしたが、ここからはカラの表面上の点、という意味で使います。

 θ=0におけるカラの断面形状(z軸を通る平面で切った形状)を媒介変数tを使って表した平面曲線
r=f(t)
z=g(t)
で与えたとします。(例えば円形にするならf(t)= A cos t + 1, g(t)=A sin t + b、ここにAは半径。1とbが出て来たのは、helix上の点(1,0,b)を中心とする円にしたからです。)そうすると、角度θにおける断面形状のサイズはexp(aθ)に比例しているわけだから、媒介変数tとθを使って、
r(θ,t)= f(t)exp(aθ)
z(θ,t) = b g(t)exp(aθ)
と表せます。
 カラの断面の大きさを小さくすれば角のようになるし、大きくすればタニシになる。b=0ならアンモン貝の形です。aを小さくするとぐるぐる巻きに、大きくすると鳥の爪のように、と言う風に、いろんな形が作れますね。

「螺旋」には、大別して2種類あります。2次元平面曲線の渦巻き模様であるspiralと、3次元空間曲線であってねじ山のようなhelixです。等角螺旋はspiralの方。描きたいと仰っているのはどうもhelixの方ですから、話が食い違っています。よく「等角らせんは、オウム貝やかたつむり などの殻,ヤギの角などの形」と説明されるのは、モノを2次元図形と見たときの大雑把な話ですから、そのまんま真に受けちゃいけません。

 spirialが等角であるということを2次元極座標(r,θ)で書けば、
dr/dθ= aθ
つまり、仰...続きを読む

Q螺旋の周長の求め方

半径rの円筒に巻きつけた糸をもどしながらできる螺旋上のある点から別の点までの周長の算出方法を知りたいのですが、どなたかご教示ください。なお、当方、高校程度の数学しか知識がありません。できるだけ、やさしくおねがいしたいのですが。

Aベストアンサー

No.2 の mame594 さんが正しい答を出しておられると思います.

これはいわゆる伸開線(インボリュート,involute)と呼ばれる問題です.
糸を巻き付ける図形は円
(質問文では円筒になっていますが,2次元平面で考えればよいので円で十分です)
だけでなくて,いろいろな図形が可能です.

さて,mame594 さんの長さの式
(1)  s = ∫[0→α] {(1+3θ^2+θ^4) / (1+θ^2)}^(1/2)} dθ
は正しい式(私も同じ答になりました)と思いますが,
積分結果は初等関数の組み合わせでは表せません.
この種の積分は一般に楕円積分と呼ばれる積分の組み合わせで表現されます.

ちょいと数値積分をしてみました.
α=π/2  s = 2.26449
α=π   s = 6.54664
α=2π   s = 22.0094
です.円の半径を1としてあります.
半径 a なら,上の数値を a 倍して下さい.

今の螺旋はアルキメデスの螺旋とは違います.
アルキメデスの螺旋は
(2)  r = bθ
であらわされます.
LP レコードの溝がほぼアルキメデスの螺旋になっています.

他に,対数螺旋(ベルヌーイ螺旋)
(3)  r = e^(cθ)
や,双曲線螺旋
(4)  r = d/θ
があります.

No.2 の mame594 さんが正しい答を出しておられると思います.

これはいわゆる伸開線(インボリュート,involute)と呼ばれる問題です.
糸を巻き付ける図形は円
(質問文では円筒になっていますが,2次元平面で考えればよいので円で十分です)
だけでなくて,いろいろな図形が可能です.

さて,mame594 さんの長さの式
(1)  s = ∫[0→α] {(1+3θ^2+θ^4) / (1+θ^2)}^(1/2)} dθ
は正しい式(私も同じ答になりました)と思いますが,
積分結果は初等関数の組み合わせでは表せません.
この種の積分は一般に...続きを読む


人気Q&Aランキング