
No.2ベストアンサー
- 回答日時:
この問題では与えられた三角形が二等辺三角形なので、かえって
点Pの持つ意味が分かりにくいかもしれませんね。
一般に、添付図(左)のように、勝手な三角形ABCが与えられた時、
その内部に点Pをとり、3つの頂点までの距離の和を考えます。
ここで、図のように辺BCおよび線分BPをそれぞれ一辺に持つ2つの
正三角形△BCD, △BPQを書くと、△BPC≡△BQDになりますので、
AP+BP+CP=AP+PQ+QD
となります。
したがって、AP+PQ+QDが最小となるのは、右の図のようにA, P, Q, Dが
一直線上に並ぶ時です。
この時、CA, CBを一辺に持つ正三角形△CAE, △ABFを書けば、同様に
B, P, EおよびC, P, Fもそれぞれ同一直線上の点となっています。
また、AP, BP, CPのなす角を見ると、
∠APB=∠BPC=∠CPA=120°
となっています。(#1さんの指摘しているのはこのことです)
このような点は、「フェルマー点」と呼ばれています。
http://ja.wikipedia.org/wiki/%E3%83%95%E3%82%A7% …
フェルマーさんも、本当にあちこちに名前が付いていますね。
なお、△ABCの内角の一つが120°を超える場合には、このような点Pを
三角形の内部にとることはできません。
その場合、三頂点までの距離の和が最小となる点は、△ABCの最大角の
頂点となります。

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報