音源の振動数が400ヘルツ、音速が340m/s、音源は人に向かって40m/s、人は音源から10m/sで遠ざかっています。この時、音源が4秒間だけ音を出したとすると、人は何秒間その音を聞くか?

という問題です。答えは波の数を使って3.6秒間と出しているのですが、ドップラー効果の式を使わずに解いてみたら3.9秒で間違っていました。音速は音源の速さに依らないので、中学受験の算数のように、音波の存在範囲のようなものを電車の長さと同じように捉えて、それが人の耳を通過する時間、という考えを使ったつもりです。考え方がむちゃくちゃかも知れませんが、おかしい所を指摘していただけないでしょうか。

1.人がもし静止していたら、4[s]×340[m/s] = 1360[m] の範囲の音波を受け取る。
2.でも人は音源の反対方向に10[m/s]で移動しているので、人が受け取る音波の範囲は、
  1360 - 40 = 1320[m]。
3.1320[m]の範囲の音波が人を通過する時間は、音速で割って、
  1320[m] / 340[m/s] = 3.88[s]。

質問者からの補足コメント

  • 音源と人の移動速度の様子を画像添付しました。

    「ドップラー効果の問題を公式を使わずに解け」の補足画像1
      補足日時:2017/07/17 11:08

A 回答 (3件)

空気が静止している座標で考えないと。



2で、音源は 40 m/s で動き、4秒間音を出すので、
波束の長さは 340x4-40x4=1360-160=1200 m
3で、波束と人の速度差は 340-10=330 m/s

1200/330=3.64 s
    • good
    • 0
この回答へのお礼

ご回答、ありがとうございます。
書いていただいたものが、空気が静止している座標になるところはよくわからないですが、波束の最後尾(=音源)が40m/sで動くので波束の長さが1200mになることは、理解できました。あと、音速と人の相対速度で考えるのですね。ちゃんと考えたら答えが出るんですね。

お礼日時:2017/07/17 10:51

No.2です。

このサイトが、図も含めてわかりやすいと思います。「公式」ではなく「現象そのもの」を理解することをお勧めします。

http://wakariyasui.sakura.ne.jp/p/wave/dopp/dopp …
    • good
    • 0
この回答へのお礼

ご丁寧にありがとうございます。自分の考えのおかしいところがわかってきました。

お礼日時:2017/07/17 11:15

肝心な、音を伝搬する空気に対してどのように運動しているか分からないので、解きようがありません。



>音源は人に向かって40m/s、人は音源から10m/sで遠ざかっています

音源と人との相対速度は「40m/s」なのですか? それとも「-10m/s」なのですか?
これが同時に成立することはあり得ません。 

「公式」以前に、起こっている現象を正しく記述してください。

ドップラー現象とは、下記のものだということを理解すれば、公式を覚える必要はありません。音波を伝搬する「空気」を基準に考えてください。

(1)音源が、音波を伝搬する空気に対してどのように運動しているか。音源の運動によらず、空気を伝わる音速は一定。
 その1秒前の音が届く「音速」の円内に、音源が発信した振動数が入っている(ただし音源は、音の円の中心にはいない)ことから、特定の方向への「波長」が決まる。つまり、音源の進行方向によって「波長」が変わる。

(2)受信者(観測者)が、音波を伝搬する空気に対してどのように運動しているか。「空気」に対する音速、振動数、波長は「音源」によって決まっているので、それを観測者が1秒間に波を何個受信するかで「振動数」が決まる。つまり、観測者の進行方向によって「振動数」が変わる。

(3)音源、観測者が両方とも動いているときには、(1)(2)を組み合わせて求めればよい。
    • good
    • 0
この回答へのお礼

詳しいご回答、どうもありがとうございます。
音源と人の動きの様子を追加させていただきました。(この画像の通り記述したつもりなんですけど、日本語が下手で申し訳ありません。)
私の解法で、間違っている箇所を知りたかったのです。

お礼日時:2017/07/17 11:13

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q斜辺を進む光は光速を超える

光速で進む物体から垂直に光を点滅させると、
直角三角形の斜辺が光の進んだ距離になります。
底辺を進む光より長い斜辺を進む光は超光速ですか?

Aベストアンサー

同じです。

>理由は?

時間がゆっくり進むから。

というか、「光速度は不変」という原理の上で論じているから、
それに合わせて「時間」の方を変える。
もしくは「距離が縮む」と考える。

Q水圧は物体に一定にかかるといいますが、それではなぜ浮力が発生するのですか?

水圧は物体に均等にかかるといいますが、それではなぜ浮力が発生するのですか?水圧と浮力の関係が今ひとつ理解できません。よろしくお願いいたします。

Aベストアンサー

均等ではありません。水深により異なります。
異なるからその差で水は落ちないのです。
つまり水自身も浮力で支えられています。

Q中学理科で光の正体は電磁波で、色の違いは波長の違いと勉強しましたが腑に落ちない点があります。

中学理科で光の正体は電磁波で、色の違いは波長の違いと勉強しましたが、腑に落ちない点があります。

例えば、部屋の本棚が茶色である時に、

茶色である本棚から茶色の波長の電磁波が出ているということでしょうか?

本棚からある一定の波長の電磁波出ているというのは、直感的に腑に落ちません。

もちろん、光源は部屋の蛍光灯ですが、蛍光灯の種類に関係なく本棚は茶色なのでやはり本棚から電磁波が出ているのでしょうか?

Aベストアンサー

>色の違いは波長の違いと勉強しましたが

大筋はそうなのですが、色=波長 ではないのです。

人間の目、網膜上には 赤付近の波長に主に反応する視細胞、緑付近の波長に主に反応する視細胞、
青付近の波長に主に反応する視細胞の3種類の視細胞があります。

人間の脳は、この3種類の視細胞の出力の「割合」を見て、色を判断しているのです。

例えば、長い波長である「赤」の光と、短い波長である「青」の光を「混合」したもの
が目に入ると、赤と青の視細胞が反応し、脳は紫色を感じ取ります。

新たに紫色の波長の光が生じるのではなく、赤と青の2つの波長の光の混合が
紫に見えるという点に注意してください。

つまりまとめると、様々な波長を混合した光が3種類の視細胞にはいり、
その結果である3種類の視細胞の出力の割合が色なのです。

なので、

>茶色である本棚から茶色の波長の電磁波が出ているということでしょうか?

は誤り。

太陽光や、蛍光灯の光は単一の波長の光ではなく、たくさんの波長の光の混合です。
ものに光が反射すると、光の波長により反射率がことなるため、
反射光の光の波長の混合の仕方は元の光とは変わります。

その結果、視細胞の出力の割合が変わり、様々な色に見えるのです。

>色の違いは波長の違いと勉強しましたが

大筋はそうなのですが、色=波長 ではないのです。

人間の目、網膜上には 赤付近の波長に主に反応する視細胞、緑付近の波長に主に反応する視細胞、
青付近の波長に主に反応する視細胞の3種類の視細胞があります。

人間の脳は、この3種類の視細胞の出力の「割合」を見て、色を判断しているのです。

例えば、長い波長である「赤」の光と、短い波長である「青」の光を「混合」したもの
が目に入ると、赤と青の視細胞が反応し、脳は紫色を感じ取ります。

新たに紫色の波長...続きを読む

Q氷が水に浮く理由、簡潔に説明してください

氷が水に浮く理由、簡潔に説明してください

Aベストアンサー

水中にあるものがうける浮力は、その物のが水中に占める体積分の、水にかかる重力になります。

浮力 より ものが重ければ沈み
浮力 より ものが軽ければ浮きます。

ということは、同じ体積の氷は、水より軽いから浮くんですね。 これは、凍る時に、体積が少し大きくなるからです。
ペットボトルに水を入れて凍らせると、ぱんぱんに破裂しそうになりますよね。だから、体積あたりにすると、軽くなります。

Qよく天井で見かける、太い銀色の配管。あれば何で、なぜ銀色なのでしょうか?

もしエアコンの冷たい空気だとしても、
アルミでつつみ意味が分かりません。
直射日光を受けるわけではないので、熱を遮断しないのでは、と思うのですが・・・

Aベストアンサー

お礼ありがとうございます。
アルミに限らず、金属の場合は水蒸気などの透過はほとんどありません。
お茶の袋がアルミシールであったり、ティーバッグなどもアルミシールなども同様です。
ポリエチレン、ポリスチレン、ウレタンなどの合成樹脂系の断熱材の場合は、素材自体の吸湿や透湿がほとんどないので、外装材に防湿性は必要ではありませんが、グラスウール、ロックウールなどの無機質ファイバー系の場合は、空気を透過してしまうので、水蒸気の透過率が高いです。
したがって、防露が必要な断熱として使用する場合は、外装材に防湿層が必要となります。
また、建築物の用途や規模により、断熱材も不燃材である必要がある場合は、不燃材料であるグラスウール、ロックウール、ガラスアルミクロスなどしか使用できない場合があります。
露出部分の場合は、見栄えを考慮して、樹脂カバー、綿布塗装(最近は少ないです)などを使用する場合が多いです。

Q原子核崩壊でα線やβ、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。

原子核崩壊でα線やβ線、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。放射性物質の半減期は何万年もあるものもあります。原子核が崩壊すればそのエネルギーが放射線となって放出されるのはわかるのですが、それは最初の一回だけ起こって、それが起こればもう起こらないのではないですか? つまり放射線も一回だけ出てもう出ない。それがずっと続いているというのは、ずっと原子核崩壊が続いているということなのでしょうか? 放射線が出続けるメカニズムがわかりません。ご教示よろしくお願いいたします。

Aベストアンサー

ある放射能を持つ核種が、単位時間に崩壊する確率は、置かれている環境に左右されません。その核種、固有値であることが経験的に知られています。
確率なので、1つの粒を見ていれば、

・ いつ崩壊するかは神のみぞ知るということで、だれにもわかりません。
・ もちろん、崩壊してしまえば、その粒からは放射線はでません。

ということになります。

その同じ核種を一定量集め、たくさんの粒を統計的に観察し、半分の粒が放射線を出して崩壊するまでの時間を半減期と呼ぶわけです。
たくさんの粒があるから、放射線が出続ける。別に不思議なことはないですね。

半減期ごとに半分になり、やがてすべて崩壊すると、放射線は出なくなります。

Q遠心力はなぜ見せかけの力と呼ばれているのですか?

等速円運動をしている物体は、中心方向にrω^2の加速度を持ち、これに質量mをかけた力Fを向心力といいますが、一方でなぜ遠心力は慣性系で見せかけの力といわれているのでしょうか?個人的には、遠心力は見せかけの力などではなく、向心力との力のつり合いや、向心力の反作用のような気がするのですが。また、遠心力が見せかけの力なのであれば、向心力も見せかけの力であると考えますが、向心力はそういう定義ではありませんよね。遠心力は実際に、水の入ったバケツを振り回した際、水がこぼれなくなる力であり、スクーターなどの遠心クラッチや遠心プーリなどは、この原理を応用して、クチッチや、プーリの開閉をしてギア比の調整をしています。

お教えください。以上です。

Aベストアンサー

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観察すれば、板は引っ張られる方向に動きつつ手前に移動します、つまり斜めに移動、この瞬間が連続すると軌跡が円運動になります。
その結果さいころは向こう側の壁に押し付けられ続けます。
最初のさいころの動き、板の上だけ見ているとサイコロが向こう側に動いたと見えます、でもサイコロには何も力は加わっていません、力が加わり動いたのは板です。
全体を見ると?、透明の板でしたが方眼紙のようなメモリがあると、サイコロは当初から引っ張られている方向には移動していますが、こちら側にに向こう側にも、壁に当たるまでは移動していません。
でも確かに壁に当たり、何等かの力?は当然感じます、これが遠心力。
反対方向に進む電車が同時に停車していて片方が動き出したとき、一瞬はどちらが動いたのかは判断できないのと同じ。
つまり物体自身の慣性により動こうとしないのに相手が動く、相対的に物体自身が動いたよう感じる。
等速直線運動はどちらも同じ条件のため、停止状態と等価、ゆえに、相対的に感じる遠心力は向心力と正反対になる。

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観...続きを読む

Q電球の明るさについて質問します 市販の電球はワット数が決まっているため、使用する際の電圧は一定でなけ

電球の明るさについて質問します

市販の電球はワット数が決まっているため、使用する際の電圧は一定でなければならないとあったのですが、
https://oshiete.goo.ne.jp/qa/5655965.html

問題として同じ明るさにする、等の問題の場合の電球も電圧は一定であるとして解くものなのでしょうか?

例えば画像問題⑸について、電球DFは異なる電圧の値をとりますが、それは大丈夫なのでしょうか?

あと、⑷の問題の答えはI=2A V=40V
ですが、⑸の答えには電球Dが⑷と同じ明るさになるためにはI=2A V=40V出なくてはならないと書いてあるのですが、W=80でありさえすればI=1A V=80V でもいいということにはならないのでしょうか?

よろしくお願いします

Aベストアンサー

No.7です。「お礼」に書かれたことについて。

>つまり
>①D,Eを10V 1AにするためにFには2A流れなくてはいけない
>②特性のグラフで2Aのときの電圧を読む(3V)
>③1+3=4V

電圧を10倍にすれば「そのとおり!」です。

①D,Eを10V 1AのままにするためにFには2A流れなくてはいけない
②特性のグラフで2Aのときの電圧を読む(30V)
③10+30=40V

ということです。

ついでにもう一言書いておくと、問題では「電圧計の読み」と「電流計の読み」しか与えれれておらず、「電球の明るさ」には全く言及がありません。図2も「電圧計の読み」と「電流計の読み」の関係です。

従って、(5)で「同じ明るさのままにする」条件は、「同じ電圧、電流のままにする」と読むのが「唯一の正解」なのだと思います。
その意味で、上記のように①→②→③ときちんと「読み取れる」グラフを提示しているという点で、「とても工夫されたよい問題」だと思います。

Q物理と数学の違いについて 続きです。 例えば長方形の一辺がx「cm」もう一方がy「cm」 y「cm」

物理と数学の違いについて
続きです。
例えば長方形の一辺がx「cm」もう一方がy「cm」
y「cm」=x^2「cm」
という関係をもつ2つの長さを求める問題は存在します。
しかしこの式は物理ではあり得ない式となるらしいです。
物理では両辺の単位が揃っていないといけないので左辺の単位は「cm」右辺の単位は「cm^2」だからです。
ただこのような関係をもつ長方形の集合は現実に存在します。
しかし物理としては❌です。
つまり自然から導き出した等式を見つけるのが物理で、その単位は必ず一致している。
人為的に等式を作り出すのが数学で、その単位が一致しているとは限らない。
という理解でいいですかね?

Aベストアンサー

最初に教えた人は「単位をそろえて一致させます」、実際の言葉はともかく内容はこうだったはずです。
国語の理解能力が十分でない質問者にとっては「そろえる」「一致させる」の区別があいまいなままでした。
板書で例を示すと、1mと50cmをつなぐと?、1m+50cm=150m(cm)?、このままでは数値のみの計算できません、そこで単位をそろえます①100cm+50cm=150cm。
単位がすべて一致、左辺右辺の単位も一致しています。
これをどう理解記憶するかが問題です。
国語の理解能力なし、結果だけほしがる、コピペ頭、が三重奏を奏でると。
「そろえる」「一致させる」の区別があいまいのため、似たようなもの、または同じと思い込む
①の板書は、そろえる、の内容ではなく、そろえた結果、です、結果だけ欲しがり、なぜ?は考えません。
結果の見てくれだけを、そのままコピペ、記憶の際、国語の理解能力欠如のため「そろえる」「一致」が同じと思い込み、見た眼だけで簡単にわかる「一致」だけで記憶した。
これがすべてです。
物理では次元の異なる単位の数値を掛け算、割り算します、答えも全く異なる次元の異なる単位になります。
単位が一致しません、そこで慌てて、自分の間違った概念に無理やりくっつけたのが、法則や比例・・・そのたの言葉です。
長さ×長さ=面積、m×m=m²、右辺と左辺単位が異なります、でもこれ物理の計算というより、算数レベルの計算ですね、そんなことには目をつぶっています。
小中学生対象の学力テストの結果、国語の読解力が諸外国に比べ相当劣っているらしい、質問者は明らかにその元凶のうちの一人と思います。
ハイ、お粗末。

最初に教えた人は「単位をそろえて一致させます」、実際の言葉はともかく内容はこうだったはずです。
国語の理解能力が十分でない質問者にとっては「そろえる」「一致させる」の区別があいまいなままでした。
板書で例を示すと、1mと50cmをつなぐと?、1m+50cm=150m(cm)?、このままでは数値のみの計算できません、そこで単位をそろえます①100cm+50cm=150cm。
単位がすべて一致、左辺右辺の単位も一致しています。
これをどう理解記憶するかが問題です。
国語の理解能力な...続きを読む

Q相対性理論とはなんですか? 最近なぜか分かりませんが、相対性理論が流行っていて、話についていけません

相対性理論とはなんですか?
最近なぜか分かりませんが、相対性理論が流行っていて、話についていけません。
僕でも理解できるようにどなたか回答お願い致します。
僕にとって分かりやすかったと思った説明をしてくださった方をVIPに選びますね(^∇^)

Aベストアンサー

私も中学生の頃に読んだ本の知識しかないんだけどね。
ちなみに計算自体は中学生数学でどうにかなる。
だけど、相対性理論で出てくる現象を理解するには、少なくとも高校生レベルの知識が必要になる。
多分君の周りで相対性理論の話題を出している人たちも、現象の半分も理解できていないと思うよ。

さて、じゃあ超簡単にどんなものかと言うと、要するに物理の理論。
細かい事を言い出すとメチャクチャ難解な理論。
で、「特殊相対性理論」と「一般相対性理論」の二つに分かれる。
ちなみに難易度は一般相対性理論の方が高い。

んじゃどんな現象のことかっていうと
特殊相対性理論では
1、光より速く動けるものはない
2、光に近い速度で動いているものの長さは縮んで見える
3、光に近い速度で動いているものの時間は遅く流れる
ってこと。
一般相対性理論は特殊相対性理論に重力を加味したもので
1、重力の強い場所ほど時間が遅く流れる
2、重力の強い場所ほど空間が歪む
3、止まっているものでもエネルギーがあって、重いほどエネルギーが大きい
てなとこ。

これらを様々な数式を使って証明して「ほらね、俺の言った通りでしょ?」っていう話。

でもってこれらの理論によって、宇宙の始まりって言われているビッグバンや、ダイソンの掃除機よりも何でも吸い込んでしまうブラックホールも、さっき挙げた6つのことで説明することができる。
どうやってそれを説明するかって話は、難しい話になるから割愛するし、何より私も説明しきれるほど知らない。

かなり簡単にエッセンスだけを抽出してみた。
とりあえず数式を解くだけなら中学生の数学で解けるけど、理解しようとしたら高校生くらいまで待てって話。

私も中学生の頃に読んだ本の知識しかないんだけどね。
ちなみに計算自体は中学生数学でどうにかなる。
だけど、相対性理論で出てくる現象を理解するには、少なくとも高校生レベルの知識が必要になる。
多分君の周りで相対性理論の話題を出している人たちも、現象の半分も理解できていないと思うよ。

さて、じゃあ超簡単にどんなものかと言うと、要するに物理の理論。
細かい事を言い出すとメチャクチャ難解な理論。
で、「特殊相対性理論」と「一般相対性理論」の二つに分かれる。
ちなみに難易度は一般相対性理...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング