
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
回答ありがとうございます
加えてなのですが、自分が数学を学べたかどうかってどうやって確認すればいいですか?
問題を解くというのもありでしょうが、受験を通して、問題をパズルのように解くのが数学ではないのに受験はその傾向があると感じて違和感を覚えていましたので、そういうやり方に抵抗があります(量も多くなり先に進めなくなりそうですし)
数学が習得できたかどうかってどうやって確かめればいいですか?
自己満足でいいですよ!わからないことは、このサイトなどで判断してもらったらどうでしょうか!?教えてGooさんは気になさらないように!
受験数学は、解法の暗記と計算力ぐらいですから、やってあまり凝らないように注意ください!
No.6
- 回答日時:
まず、どこまでわかっているかということですね!
教科書があれば、まずそれで思い出すことでしょう!
私も、学校卒業して35年に子供の大学受験のため、数3の教科書で勉強して
答えは、巻末の値のみでしたが、2-3ヶ月で思い出しました。
かって、苦手だった確率までもわかるようになり、
大学1年の 差分・和分や新しくベクトルの外積も少しわかるようになりました。
ですから、まず、教科書の理解からでしょう!
→基本問題集で基本問題を嫌になるほどやる!
受験数学は、貴方の勉強にはあまり意味ないと思いますので、わかれば、大学数学に進むのがいいと思います。
まー数学3がわかれば、すぐに目標を達成できるのではと思います!
あと 参考には、
BS放送の放送大学の講義が素晴らしいです。
初めて……シリーズは、高校レベル!
インターネットでのyoutubuの映像授業もわかりやすいと思います。
No.5
- 回答日時:
学びの深さにはいろいろある。
1.記述が自分なりに納得できる。
2.本文に沿って自分でもう一度計算してみて確認する。
3.練習問題が解ける。
4.憶えた知識を活用できる。
たとえば、
微分方程式論 福原、佐藤 共著 共立出版
のp87には
点集合Eが有限な集合であるか、またはその無限な部分集合がいつでも集積点をもつとき、
Eはコンパクトであるという。
と書いてあって、
p91では、
コンパクトな集合の部分集合がコンパクトであることはコンパクトの定義から明らかである。故に、、、
と書いてある。でも、
連続群論 ポントリャーギン 岩波書店 のp79には
コンパクト空間の閉部分集合はコンパクトである。
と書いてある。(閉 が有るか無いかの違いです)
そこで、
E=[0,1] と F=(0,1) を考える
Fの中にある無限部分集合{1/n|nは2以上の自然数}
集積点は0だけど、これはFには入っていない。
理解できないので、p91の証明を書き換えて勝手に修正する。
ことになります。
もちろん、著者が生きていれば、自分の修正案を添えて、本文の修正を要求するメールを送ることになります。
この作業と2番目の計算が終われば
学習したと考えて良いと思います。
3,4は時間的な余裕のあるときや、必要になったときにやればよいと思っています。
特に、4の活用は10年くらいたってから、全く別のことを考えているときにふと思いついて
昔の知識が役に立つ場合があるので、いつどんなときに活用できるかは予測できません。
No.4
- 回答日時:
No.3 のスミルノフの高等数学教程は12冊の本です。
特徴は丁寧な記述にあります。
読みやすい本だと思います。
分からなくて諦めてしまうことも考えられますが、
この本は初心者を勇気付けてくれる書き方をしている。
分からなくなったら前書きに戻って読み直しましょう。
趣味で勉強するときに、
本の記述が間違っているから理解できないのか、
それとも自分の誤解や理解不足が原因なのかを突き止めるのが難しいです。
教えてくれる人がいれば簡単ですが、一人では難しい場合があります。
自分に理解できないときは、著者が間違っているのだと思って修正を試みましょう。
他の本の記述を確認するのも有効です。
普通の数学の本には、沢山のミスプリントや誤りがあります。
そこで、著者がまだ生きているような本を読んで、
間違いの一覧と修正案を著者に送って、
確認を取れば、自分の理解が正しかったことが分かります。
ほとんどの著者は喜んで確認の返事を書いてくれます。
まれに、間違いを修正した改訂版をプレゼントしてくれる人もいます。
スミルノフの本は古いので、読み終わっても、今の理系学部卒とは言えないので、
・解析学(微分、積分系の話)
・線形代数学(ベクトル、行列系の話)
・複素関数論
・代数学(群、環、体)
・位相
・多様体
・整数論
・確率論
など、面白そうなものを見つけて読んでください。
読んでいて、ある分野の知識が足りないと感じたら
その分野の本を読んで知識を補充すればよい。
No.1
- 回答日時:
趣味なら趣きを味わうのが目的でしょうから、当然、趣きを感じるものを選ぶことになる。
一通り眺めてみて、ふうん、という所までは良いが、さてそれをしっかり味わう、すなわち深く理解したり他の話との関連を検討してみたりするためには、勉強する必要がある。何を勉強すべきかといえば、その都度必要になったことを遡って勉強する。その勉強自体も楽しみがあり、しばしば、へえそうだったのかあ、なるほどなあ、という感慨を生む。てなことをやっている内に次第に腕ってか鑑賞眼ってか「作品」を理解するための教養が育ってきて、それに連れて趣きを感じる対象も変化してくる。時には自分でちょっとした「作品」を作ってみたくもなる。ま、そうやって漂いながら長く楽しむのが「正しい」趣味のありかたのように思います。てなわけで、大学の図書館とか都会の大きな本屋の数学専門書コーナーに行って、本棚をためつすがめつ眺めながら「本に呼ばれる」のを待つ、ってのがやり方のひとつかと。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
5÷6の解答は?小学三年生に
-
数学勉強法 和田式 暗記数学 問...
-
数学が面白くない
-
数学は暗記量の多い科目なのか?
-
数学の勉強法 国語96点、英語82...
-
駿台のテキスト内容が知りたい
-
ユークリッドの互助法
-
数学の勉強が集中できない。
-
数学は何のためにあるのですか?
-
数学が本当にできないので相談...
-
∞の定義とは何なのでしょうか?
-
数学が超超超苦手です
-
問題の回答を覚えてしまい復習...
-
センター試験 数学 半分点数...
-
数学を極めたい!
-
私の数学の勉強は暗記でした
-
大人になってから数学を勉強し...
-
数学I、II、III、A、B、Cを独学...
-
暗記数学について
-
高3の夏が終わったのにまだ大学...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学が本当にできないので相談...
-
5÷6の解答は?小学三年生に
-
センター数学 I or IA?
-
数学の勉強法についてですが、 ...
-
算数が出来ない大人です。 数字...
-
因数分解
-
問題の回答を覚えてしまい復習...
-
理学部数学科の2年生です。 1年...
-
センター試験の数学
-
ユークリッドの互助法
-
IQと学業成績の相関関係について
-
大学数学を理解するためには高...
-
算数や数学が理解できないけど...
-
教えて下さい
-
数学I、II、III、A、B、Cを独学...
-
大学の数学を理解するため必要...
-
『齋藤正彦 微分積分学』
-
職業訓練校の試験(数学の四則...
-
小学生でも理解できる数学書を...
-
三平方の定理の応用問題が分か...
おすすめ情報
回答ありがとうございます
加えてなのですが、自分が数学を学べたかどうかってどうやって確認すればいいですか?
問題を解くというのもありでしょうが、受験を通して、問題をパズルのように解くのが数学ではないのに受験はその傾向があると感じて違和感を覚えていましたので、そういうやり方に抵抗があります(量も多くなり先に進めなくなりそうですし)
数学が習得できたかどうかってどうやって確かめればいいですか?