変数とパラメータとは違うものでしょうか?
もし違いがあるのならば、どういう違いがあるのでしょうか?
たとえば、y=ax+bという式では、yとxは変数で、aとbはパラメータみたいな、いいかげんな理解しかありません。
(aとbが変数になり、yとxがパラメータになることもあることはわかります。)
解説のあるURLとかもあったら教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

>たとえば、y=ax+bという式では、yとxは変数で、aとbはパラメータみたいな、


>いいかげんな理解しかありません。

そのような理解でいいと思いますよ。

さらに簡単な式を考えて: y=f(x)=ax
こうして書かれた関数fはxの陽の関数ですが実は沢山の直線を含みます。
補助変数aを1、2,3・・・と変えていくと確かにそうなりますね。
f(x;a)=ax とでき、fは見た目にはaにもxにもよる関数になります。
言葉でいうとこの方程式はパラメータaに依存した式です。
aの値を異なるように固定することによって個々の関数の性質は違ってきます。
f(x;1)=x  :yはxの値に等しい。
f(x;0)=0  :yはxの値に関わらず常に0である。
とこの二つの関数は違いますね。
これはパラメータaの値に依存して方程式の性質が変わってしまったのです。

グラフ上では単なるy=xとy=0の違いですが、
物理的に考えるとある物理量yはある物理量xに単純依存するのか、
それとも物理量xがいかなる量を取ろうとも物理量yは表れず観測されない
のかとでは、かなり大きな違いです。
統計量にしても、xを夏の一日の最高温度、yを清涼飲料水の一日の売上金
としてその相関をaと考えれば、相関がないとするとf(x;0)=0となり、
現実に合わない結果になります。このような場合xとyが関係あるのか無いの
かは調べて実際みないと分からないので取りあえず生のデータを取ってみて
統計からきめます。例えば最小二乗法によってaを決めます。
    • good
    • 0
この回答へのお礼

回答ありがとうございました。

お礼日時:2002/03/30 17:19

変数…1方が1つ決まると他方も1つ決まる、つまり「伴って変わる」


2つ1組の数。
y=f(x)でとyが従属変数、xが独立変数という。

定数…変数以外の数
「伴わないで変わる」…任意定数(パラメータ、y=axのaなど)
「伴わないで変わらない」…与えられた定数(y=2x)

任意定数∋媒介変数であって、任意定数の意味は媒介変数だけではない。
ここを間違ってはいけない。
    • good
    • 2
この回答へのお礼

回答ありがとうございました。

お礼日時:2002/03/30 17:20

変数は英語でvariable(変わり得る物)ですから、色々な値を取り得る数の事です。


パラメータも色々な値を取り得ますが、どちらかと言うとサポート的な役割を果たします。

三角関数はご存知ですか?でないとちょっと先の話になってしまいますが。
原点を中心とする半径1の円の方程式は
    x^2 + y^2 = 1
ですね。ここで、x, y は変数という事になります。
同じ図形を
    x = cos t
    y = sin t
と表す事が出来ます。これが「パラメータ表示」です。

直線でもできますね。
2点 A(x0, y0), B(x1, y1) を通る直線の方程式は
    (y1 - y0)(x - x0) = (x1 - x0)(y - y0)
ですが、ここでもパラメータ t を用いて
    x = x0 + x1*t
    y = y0 + y1*t
と表す事が出来ます。


とここまで書いてご質問のパラメータとちょっと意味合いが違う事に気付きました。
    y = ax + b
でa, bがパラメータと言うのは、a, bを一定の値にした時にy=ax+bがどのような直線になるかを規定するものという事でしょう。
ざっくばらんに言うと先にa, bが決まって、後はxとyが遊んでるイメージ。
> (aとbが変数になり、yとxがパラメータになることもあることはわかります。)
確かにそうですね。
但し、数学の世界では大抵どの文字はどんな用途に使われると言う暗黙の了解があるので
実際にはあまり出会わないと思いますが。
    • good
    • 1
この回答へのお礼

回答ありがとうございます。
ちょっとややこしくなってきました。教科書とかに定義とかのっていればそのまま覚えちゃうんですが...

お礼日時:2001/08/10 09:59

数式というのは一般に世の中の現象を複数の要素間の関係で表しています。


通常はその中のいくつかの要素の値を決めて、残りの要素間の関係をグラフで表したりします。
値を決めた(又は仮定した)もの(半固定)がパラメータで値が決まっていないもの(可変)が変数だと思います。
数学的な定義は知りませんが私の理解です。

最小二乗法ではY=AX+Bの形で現象を表しておき、沢山のデータ(x、y)を使って最適なA,Bを決めます。
次にx、yを変数としてxを決めればyの推定値が計算できます。

途中で、変数が入れ替わっているのが、お分かりだと思います。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
変数とは、値が決まっていないもの、パラメータとは、値を決めたもの。
そういわれれば、そんな気もします。

お礼日時:2001/08/10 09:52

パラメータとは、あるもの(この場合は数式)の性質を変えるためのもの。

(aやbを変えると、線の傾きや高さが変わる)

変数とは、あるものの状態を表すもの、ってなるんじゃないでしょうか。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
うーん。むずかしいですね。

お礼日時:2001/08/10 09:49

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q材料力学(数学)の問題です。 0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-a

材料力学(数学)の問題です。

0<x<bでy=ax、b<x<2bでy=ab、2b<x<3bでy=-ax+3abである関数のグラフを描け。a、bは正の定数とする。
この問題の解き方を教えて下さい。わかりやすく解説してくだされば有難いです。

Aベストアンサー

0<x<bでy=ax
これは単なる比例です。aが正の定数なので、0を通る右上がりの直線ですね。

b<x<2bでy=ab
a,bが定数なので、abも定数です。
x=bの時「y=ax」=「y=ab」であるので、
y=axのx=bにおけるyから横一直線ですね。

2b<x<3bでy=-ax+3ab
これは最初の比例のグラフと傾きが正負逆になっていますね。
x=2bの時y=-2ab+3ab=ab、
x=3bの時y=-3ab+3ab=0
となる右下がりの直線ですね。

x=0,b,2b,3bは範囲外となります。
グラフを描く時に境界部分で○とするか●とするか間違わないように。

Q2直線 x/a+y/b=1, x/a+y/b=2(a>0, b>0)の

2直線 x/a+y/b=1, x/a+y/b=2(a>0, b>0)の間の距離を求めよ。

という問題の解説に、

2直線は平行だから、第一の直線上の点(1、0)を通る。よって、ここからbx+ay=2abまでの距離を求める

と、ありました。

なぜ(1,0)を通るのですか?

Aベストアンサー

誤記なんてレベルでは済まないですよ。
 A.2直線は平行である。
 B.第一の直線が点(1,0)を通る。or B'.第一の直線上のどこかの点を第二の直線が通る。
 C.AがB(またはB')の根拠になっている。
このうち正しいのはAだけです。

第一の直線は点(a,0)を通る。
また、2直線は平行だから、点(a,0)から第二の直線までの距離を求めればよい。
とでも書くのなら良いのですが、論理が滅茶苦茶ですね。

Aベストアンサー

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると
   両方に(b2-b1)をかけた式で a1(b2-b1)-(a1b2-a2b1)=-a1b1+a2b1
   =b1(-a1+a2)>0 となるので a1>(a1b2-a2b1)/(b2-b1) となります
   したがって、ここでの解は(1)の解でよいことになります。
2.a1≦x<a2 のとき・・・x-a1は正、x-a2は負だから
   b2(x-a1)>-b1(x-a2)
   これを解いて、x>(a1b2+a2b1)/(b1+b2)
   ここで、1.のときと同様にして (a1b2+a2b1)/(b1+b2) とa1,a2
   との大小関係を考えると、省略しますが、
     a1<(a1b2+a2b1)/(b1+b2)<a2 となり、
   ここでの解は (a1b2+a2b1)/(b1+b2)<x<a2・・・(2)
3.a2≦x のとき・・・x-a1もx-a2も正だから
   b2(x-a1)>b1(x-a2)
   これを解いて x>(a1b2-a2b1)/(b2-b1)
   同様に a2 と (a1b2-a2b1)/(b2-b1) の大小関係を調べると、また
   省略しますが a2>(a1b2-a2b1)/(b2-b1) となり
   ここでの解は a2≦x・・・(3)

以上、(1)~(3)が解となります。
各場合について、数直線をかいて考えるといいでしょう。

絶対値があるので、x<a1 と a1≦x<a2 と a2≦x の3通りの場合分け
が必要です。0<b1<b2ですから、与式の両辺に b1b2 をかけておいて
 b2|(x-a1)|>b1|(x-a2)| と変形してからやるといいです。
考えとしては絶対値の外し方[x<0のときlxl=-x,0≦xのときlxl=x]を使い
ます。
1.x<a1 のとき・・・x-a1もx-a2も負になるからマイナスをつけてはずす
   -b2(x-a1)>-b1(x-a2) →両辺に-1をかけてb2(x-a1)<b1(x-a2)
   これを解いて、 x<(a1b2-a2b1)/(b2-b1) ・・・(1)
   ここで a1 と (...
続きを読む

Q(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

(d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。
これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。
そこで、
(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy
が成立するための必要十分条件を教えていただきたいと思っています。
もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

Aベストアンサー

積分と微分の順序交換については
必要十分条件は一般にはありません.
ただし,十分条件は知られています.

リーマン積分の範囲だと
f(x,y)が連続で,f_y(x,y)も連続くらいの条件があれば
d/dy∫f(x,y)dx = ∫f_y(x,y)dx
くらいがいえるはずです.
#積分区間とかは省きます.

その十分条件で一番便利だろうと思われるものは
ルベーク積分の言葉で記述されます.
興味があれば,「ルベーク積分」の本を
追いかけてください.
・ルベークの有界収束性定理
・L^1空間
というようなものが理解できれば,順序交換の定理は理解できます.


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報