ただいまテスト勉強中です。
そこで質問です。

確率変数xが[ a , b ]上に一様分布しているとき確率密度関数は

P(x) = { 1 / ( b - a ) ( a <= x <= b)
{ 0 ( x < a , b < x)

で、平均、分散は
E[x] = (a + b)/2,

V[x] = (a - b)^2 / 12,

と参考書ではなっているのですが、P(x), E(x), V(x) が
それぞれなぜこうなるのか理解でいません。

解説、証明、参考HP 等、
よろしければ教えていただけないでしょうか。
よろしくお願いします。

A 回答 (3件)

P(x)については、これが一様分布の定義みたいなものだと思います。

とりあえず覚えてください。(こういう確率密度関数のものを○○分布という、という感じ)
一様分布にせよ、ポアソン分布にせよ、正規分布にせよ、確率密度関数がなんでこうなるのかというのは、もちろんあると思うのですが(一様分布については、MarrowGさんのおっしゃるとおりですよね)毎回そこから立ち返るのが得策とは思えません。
E[X],V[X]についても、その定義どおりに計算するだけです。
V[X]=E[(X-E(X))^2]が定義、ちょっと計算すると、V[X]=E[X^2]-(E[X])^2になるという流れですね。
いずれも、確率のテキストで、主要な確率分布などという内容のページの解説に書いてあると思います。
    • good
    • 0
この回答へのお礼

ありがとうございます。

お礼日時:2001/12/06 11:54

E[x]=∫(-∞から∞)xf(x)dx 


E[x^2]=∫(-∞から∞)x^2f(x)dx
より
E[x]=∫(aからb)x/(b-a)dx
  ={1/2(b-a)}*[b^2―a^2]
  =(a + b)/2
E[x^2]=∫(aからb)x^2/(b-a)dx
    ={1/3(b-a)}*[b^3―a^3]
    =(a ^2+ ab+b^2)/3
V[x]=E[x^2] - (E[x])^2
  =(a - b)^2 / 12
以上です


  
    • good
    • 0

ずいぶん昔に勉強したのでうまく説明できるかどうかわかりませんが…。



>確率変数xが[ a , b ]上に一様分布している

一様分布である、ということは、xがa・b間で一定の確率であるということです。
これをグラフにするとこんな感じ。(うまくいくかな?)

確率|
  |   +--------+
  |   |        |
  |   |        |
0-+----------------
  |   a        b

また確率密度関数の総和ΣP(x)=1ですから、P(x)はご質問の式で表すことが出来ます。

平均はまさに平均値です。
一様分布の場合は全ての確率値が一定ですから、a・b間の中央である、(a+b)/2が平均となります。

分散はこれはあまり自信が無い…。
E[x]=x~ とすると、V[x]=E[(x - x~)^2]だったはずなので、中を展開すると
V[x]=E[(x^2 - 2xx~ + x~^2)]
=E[x^2] - 2E[x~]E[x] + E[x~^2]

x~は平均なので、これの平均をとってもx~そのものだからE[]をとってもOK。

=E[x^2] - 2x~E[x] + x~^2

E[x]=x~と仮定したので、

=E[x^2] - 2x~^2 + x~^2
=E[x^2] - x~^2

E[x]=x~と仮定したので、結果的にこうなる。

V[x]=E[x^2] - (E[x])^2

これにE[x]=(a+b)/2を当てはめると、

V[x]=(a^2+b^2)/2 - ((a+b)/2)^2
=(a^2+b^2)/2 - ((a^2 + 2ab + b^2)/4)
=(2(a^2)+2(b^2) - (a^2 + 2ab + b^2))/4
=(a^2 - 2ab + b^2)/4
=((a-b)^2)/4

っと、答えが違う…。(大汗
分散はよく覚えてないけどこんな感じの計算だと思います。
あてにならなくてすいません…。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

    X      P     

このカテゴリの人気Q&Aランキング

おすすめ情報

カテゴリ