AIと戦って、あなたの人生のリスク診断 >>

恐れ入ります。
“状態量”という言葉の意味がわかりません。
読書中に「内部エネルギーは状態量で、熱と仕事は状態量ではない。」という文章ができてました。“状態量”の意味が理解できないので、この文章もどういうことかわかりません。
できましたら、高校化学や物理の知識レベルで解説願えないでしょうか?
なお、ネットで調べたウェキペディアのページ(http://ja.wikipedia.org/wiki/%E7%8A%B6%E6%85%8B% …)などを見ても、当方の知識不足で説明が理解できません。
よろしくお願い致します。

このQ&Aに関連する最新のQ&A

A 回答 (5件)

状態 (物質量と温度と圧力or濃度) が決まれば,どういう経路でその状態になったかに無関係に決まる物理量が状態量.


したがって,2つの状態の間の状態量の変化分は,変化の道筋によりません.たとえばエンタルピーは状態量ですから,最初と最後の状態が同じであれば,途中の経路がどうであっても正味のエンタルピーの出入りは同じにならなくてはいけません.
しかし,一般的な熱や仕事は,経路が変われば出入りする量は同じになりません.熱力学第1法則を考えてください.これは熱と仕事の等価性を含んでいるわけですが,状態量である内部エネルギーを変化させるのに,熱と仕事をどのように配分するかは任意にできる,ということを意味しているとも考えられます.すなわち,これらは状態量ではありません.
    • good
    • 6
この回答へのお礼

ありがとうございます。
よくわかりました。
大変助かります。(^^)

お礼日時:2005/12/20 21:35

このサイトがヒントになると思います。


PDFファイルなので規約上URLが貼り付け出来ません。
Googleで「熱流体システム第 状態量 強度概念 keio Fluid」
で検索してください。
8/12ページです。
    • good
    • 2
この回答へのお礼

熱や仕事は経路によるということは、すなわち、出入りする物なのですね。
なんとなくイメージがつかめました。
ありがとうございます。

お礼日時:2005/12/19 21:05

No1です。


補足すると、
熱力学では系の間を出入りするものを用語として熱と呼んでいるといるので、単に言葉の問題かもしれません。
    • good
    • 0
この回答へのお礼

ご回答頂き、ありがとうございます。
No.1の説明と補足説明で、だいぶ理解できたように思います。
とりいそぎ、お礼まで。(^^)

お礼日時:2005/12/19 20:57

たとえば、厳密でないかもしれませんが、内部エネルギーというのは、物質が内部に含んでいるエネルギーということですよね。

つまり、温度、圧力などの要因によって、個々の物質について決まるものです。

すなわち、状態量というのは、「**の内部エネルギー」、「**の温度」、「**の圧力」などのように、**に相当する物質について記述される量ということです。

それに対して、熱とか仕事というのは物質に対応していません。
変な話ですが、「**の持っている熱」はどうなんだという疑問が出てくるかもしれませんが、これは状態量ということになると思います。つまり、「**の持っている熱」というのは概念としては「**の内部エネルギー」と関連するものであり、単なる熱(すなわち、エネルギー)とは別のものだからです。
    • good
    • 1
この回答へのお礼

とてもわかりやすい説明で解答頂き、ありがとうございます。
温度とは何なのだろうという、新たな疑問も生まれました。
教えて頂いたことを参考に、いろいろ調べて見ます。

お礼日時:2005/12/19 21:01

系の状態を記述する量ということでしょう。


熱とか仕事は系から出入りしたり、系に対してしたりするものなので、
たとえば、温度200K、体積20L、内部エネルギー30Jの気体というふうにして、系を記述することはできるけど、
熱が30kJの系とはいえません。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエントロピー変化の計算

完全気体の圧力がPiからPfまで等温変化するときのエントロピー変化を計算せよ、という問題があります。しかしどのように計算すれば良いのか分かりません。この答えはΔS=nR*ln(Pi/Pf)だそうです。

以下は自分の考えです。
dS=dq/T と表されるのでΔS=∫(dq/T)=q/T (積分範囲はi→f)となり、熱を求めようと思いました。
等温変化なのでΔU(内部エネルギー変化)=q+w=0 (q:熱 w:仕事)が成り立ち、q=-wとなり、仕事を求めばいいと思うのですがどのようにwを求めていいのか分かりません。圧力一定で、体積が変化する場合なら求められるのですが・・・。

どなたかお分かりになる方、教えていただければ幸いです。

Aベストアンサー

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数だからです)
そして今dT=0より、結局pdV=-Vdp 状態方程式でVをpであらわし
よって、∫dS=∫pdV/T=∫-Vdp/T=∫-(nR/p)dp
=-nR[logp](p=pi~pf)
=nRlog(pi/pf)

余談ですけど、なぜ可逆過程なのにエントロピー変化があるのかというと、ひとつは、断熱系と混同しがちだからです。dS≧dQ/Tというのが、一番基本的なものなのです。断熱系dQ=0の場合のみdS≧0となりエントロピー増大則になります。また
等温変化の可逆過程では、dS=dQ/Tと、=になりましたけど、
これを高熱源や低熱源を含めた全体の系に適用すると、全てを含めた全体は断熱系になっているから、
dQ=0より、エントロピー変化はありません。
質問の場合なら、一見エントロピーはΔS=nR*ln(Pi/Pf)
と増加しているようですが(膨張を過程),それは気体のエントロピーのみ考えているからであり、
完全気体が高熱源から準静的に熱量Qをもらっている
はずで、逆に言うと高熱源は熱量Qを失っています。
だから、高熱源はエントロピーQ/Tだけ失っているから
完全気体と高熱源をあわせた系のエントロピー変化は
-Q/T+nR*ln(Pi/Pf)=0となって、結局全体で考えれば
エントロピー変化はありません。カルノーサイクル
の例も一応挙げとくと、
高熱源のエントロピー変化量:-Q/T1
低熱源〃:(Q-W)/T2
ですけど、カルノーサイクルの効率は1-(T2/T1)より
W=Q(1-T2/T1)∴低熱源:Q/T1となって、高熱源と低熱源
をあわせた系全体のエントロピーの変化はありません。

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qエントロピーの意味がわかりません。

本を読んでいると、「エントロピーの発生、増大」とった表現とたまに出会いますが、一体どういうことを言っているのかよくわかりません。辞書を引いてもよくわかりませんでした。どなたか解説おねがいします。

「…夏だろうが冬だろうが温度が一定であるという秩序こそが文明にとって大切だと考えるべきなのです。しかし、秩序をそのように導入すれば、当然のことですが、どこかにその分のエントロピーが発生する。それが石油エネルギーの消費です。」

エントロピーとは何かと引き換えに発生するものなのですか?今もっている知識は「エントロピーの増大=無秩序状態になる」ということと、「自然は必ず秩序から無秩序に向かう」ということぐらいです。このことについても解説してもらえると助かります。

Aベストアンサー

.
 熱力学第二法則がエントロピー増大の法則なのですが、難しいことは一切言わず、身の回りで見られる現象面だけで説明することにします。

 熱いものは放っておくと自然に冷める。コーヒーにクリープを入れるとかき混ぜなくてもやがては混じり合う。水は高いほうから低いほうに流れる。リンゴは木から地面に落ちる。岩石は風化して砂や土になっていく。綺麗に整理しておいた机の上もそのうち乱雑になる....
 こういうふうに、自然というのは(手をかけない限り)何か特定の高い(秩序がある)状態から乱雑なあるいは拡散した状態になっていく…というのがエントロピー増大の法則です。これは自然の原理なんです。

 これをもっと拡大解釈すると情報の世界にも通用します。機密性の高い情報はやがては漏れたり流布して誰もが知ることになり、情報としての価値が薄れる。高度な知識もいずれは普及して常識化し、知識と言うほどではなくなる。最新モデルの製品は発売したときから陳腐化を始め、作られた制度は運用とともに活力が失われ有名無実化していく。感動的な芸術も次第に輝きと人々の関心が薄れる…という具合です。

 エントロピー増大という自然の原理に逆らうためには、人手などの外力をかける必要があります。たとえば、製品の使用が終わりゴミや屑と化して散逸した(エントロピーが増大した)ものを収集し分別し場合によっては精錬や高純度化すれば、エントロピーが小さい状態になります。
 「捨てればゴミ、分別すれば資源」などと最近よく言われます。ゴミ化すればエントロピー増大に行きますが、分別して純度・濃度を高めればエントロピーが小さくなります。

.
 熱力学第二法則がエントロピー増大の法則なのですが、難しいことは一切言わず、身の回りで見られる現象面だけで説明することにします。

 熱いものは放っておくと自然に冷める。コーヒーにクリープを入れるとかき混ぜなくてもやがては混じり合う。水は高いほうから低いほうに流れる。リンゴは木から地面に落ちる。岩石は風化して砂や土になっていく。綺麗に整理しておいた机の上もそのうち乱雑になる....
 こういうふうに、自然というのは(手をかけない限り)何か特定の高い(秩序がある)状態から乱雑...続きを読む

Q蒸気圧ってなに?

高校化学IIの気体の分野で『蒸気圧』というのが出てきました。教科書を何度も読んだのですが漠然とした書き方でよく理解できませんでした。蒸気圧とはどんな圧力なのですか?具体的に教えてください。

Aベストアンサー

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できます。
また、油が蒸発しにくいのは油の蒸気圧が非常に低いためであると説明できます。

さきほど、常温での水の飽和蒸気圧が0.02気圧であると述べましたが、これはどういう意味かと言えば、大気圧の内の、2%が水蒸気によるものだということになります。
気体の分圧は気体中の分子の数に比例しますので、空気を構成する分子の内の2%が水の分子であることを意味します。残りの98%のうちの約5分の4が窒素で、約5分の1が酸素ということになります。

ただし、上で述べたのは湿度が100%の場合であり、仮に湿度が60%だとすれば、水の蒸気圧は0.2x0.6=0.012気圧ということになります。

蒸気圧というのは、主として常温付近で一部が気体になるような物質について用いられる言葉です。

液体の物質の場合に、よく沸点という言葉を使います。
物質の蒸気圧が大気圧と同じになったときに沸騰が起こります。
つまり、沸点というのは飽和蒸気圧が大気圧と同じになる温度のことを言います。
しかし、沸点以下でも蒸気圧は0ではありません。たとえば、水が蒸発するのは、常温でも水にはある程度の大きさ(おおよそ、0.02気圧程度)の蒸気圧があるためにゆっくりと気化していくためであると説明できま...続きを読む

Q断熱膨張におけるエントロピー変化について

断熱膨張で、
可逆的の場合、
ΔS(系・外界ともに)=0でΔStot=0(Δq=0より)
不可逆の場合、
ΔS(系)=nCv,mln(t1/t2)+nRln(V1/V2)
ΔS(外界)=0 ΔStot>0より自発的に起こる。
という理解をしているのですが、なぜ不可逆の場合、ΔS(系)はΔS=Δq/Tの式に反して正の値を取るのでしょうか?

Aベストアンサー

もし理想気体を考えておられるのでしたら不可逆的断熱膨張として質問者さんが計算しておられるものに問題があります。たとえば初期にV1だった理想気体を、連結した真空側の容器に広げて合計体積をV2(=V1+V1')にしたとします。エントロピーは状態量ですから初めと終わりが決まれば差は決まります。但し、変化量の計算は準静的ルートに沿って行います。断熱可逆膨張したとすれば(表記T1, T2, V1, V2が質問者さんと逆になりますが)
ΔS=∫(Cv/T)dT+∫(P/T)dV=Cv∫(1/T)dT+R∫(1/V)dV
=Cvln(T2/T1)+Rln(V2/V1)...(1)
となります。そして断熱可逆膨張については
T2={(V1/V2)^(γ-1)}T1...(2)
が成り立ちます。(この式の導出に準静的過程の要請が含まれています。)ここでγ=Cp/Cvであり、理想気体ならばCp-Cv=Rですからγ-1=R/Cvです。さて(1)を計算すると
ΔS=Cvln{(V1/V2)^(γ-1)}+Rln(V2/V1)
=Cv{(γ-1)ln(V1/V2)+(R/Cv)ln(V2/V1)}
=Cv{(γ-1)ln(V1/V2)+(γ-1)ln(V2/V1)}
=Rln{(V1/V2)(V2/V1)}
=0
となります。理想気体の断熱膨張ではエントロピーは増えません。等温過程ならばエントロピーが増大してその量はΔS=Rln(V2/V1)です。これは熱源からとった熱量をTで割ったものです。

>なぜ不可逆の場合、ΔS(系)はΔS=Δq/Tの式に反して正の値を取
>るのでしょうか?
もし、理想気体の膨張の話ではなくて、断熱過程でエントロピーの増大が起こったとしたら、それは熱の流入によるものではなく内部でのエントロピー生成です。
dS=dQ/T
は可逆過程のみでなりたちます。不可逆過程ならば
dS>dQ/T
となります。Clausiusのいう非補正熱をdQ'とかけば
dS=dQ/T+dQ'/T
となります。このdQ'/Tに対応するものです。

もし理想気体を考えておられるのでしたら不可逆的断熱膨張として質問者さんが計算しておられるものに問題があります。たとえば初期にV1だった理想気体を、連結した真空側の容器に広げて合計体積をV2(=V1+V1')にしたとします。エントロピーは状態量ですから初めと終わりが決まれば差は決まります。但し、変化量の計算は準静的ルートに沿って行います。断熱可逆膨張したとすれば(表記T1, T2, V1, V2が質問者さんと逆になりますが)
ΔS=∫(Cv/T)dT+∫(P/T)dV=Cv∫(1/T)dT+R∫(1/V)dV
=Cvln(T2/T1)+Rln(V2/V1)...(1)
...続きを読む

Q熱力学の仕事について

熱力学において仕事を求める時は
 W=p∫dv
だと思っているのですが、ランキンサイクルで仕事を出すとき参考書では、
 W=v∫dp
となっていました。これは同じことを言っているのですか?
ご存知の方教えて下さい。

Aベストアンサー

No4 ency です。

前の書き込みの内容だけだと、「工業仕事」の物理的な意味がまったくない、と思ってしまうかもしれませんので、少し補足します。

そもそも、絶対仕事とは「物体の体積が変化することによって、その物体が外に対してする仕事 (= 物体が失うエネルギー)」のことですよね。
# 当然、体積変化がなければ、絶対仕事はゼロです。

一方、工業仕事は「物体の圧力が変化することによって、蓄えられるエネルギー」ととらえることができます。
# 工業仕事の方は、圧力変化がなければゼロです。
# 体積変化がなくても、圧力変化があれば
# 工業仕事はゼロになりません。

ま、名前の由来はよく知りませんが、定義式の形が (絶対) 仕事に似ていたために、「工業仕事」という名前にしたのかもしれません。

とりあえず「閉じた系の仕事」=「絶対仕事」、「開いた系の仕事」=「工業仕事」という覚え方で良いと思います。
# 工業仕事のことを単に「仕事」と呼ぶのが
# 一般的なのか、よく知りません。
# 熱機関屋さんがどのように呼んでいるのか、
# 知りたいところですね。

No4 ency です。

前の書き込みの内容だけだと、「工業仕事」の物理的な意味がまったくない、と思ってしまうかもしれませんので、少し補足します。

そもそも、絶対仕事とは「物体の体積が変化することによって、その物体が外に対してする仕事 (= 物体が失うエネルギー)」のことですよね。
# 当然、体積変化がなければ、絶対仕事はゼロです。

一方、工業仕事は「物体の圧力が変化することによって、蓄えられるエネルギー」ととらえることができます。
# 工業仕事の方は、圧力変化がなければゼロです。
#...続きを読む

Q等温変化と断熱変化の違い

よろしくお願いします。物理の熱のところについて質問させてください。

ピストンを動かすときに等温変化や断熱変化、定積変化、定圧変化などがありますが、定積変化や低圧変化はわかるのですが、等温変化と断熱変化の違いがわかりません。
どちらも温度、つまり熱の移動がない変化ということではないかと思うのですが、テキストでは、条件が違います。
等温変化のときは、ΔU=0で
断熱変化のときは、Q=0となっていました。
自分は同じ熱の移動がないという変化なのに、どうして条件が違うのか疑問です。
Uは内部エネルギーで、Qは熱量です。
等温変化のときは、ΔU=0のみが条件だとすると、
式ΔU=W+Qより、
Q=0でなくてもいいということですか?つまり、W=-Qであれば、Qは0でなくてもいいということでしょうか?
温度イコール熱ではないのでしょうか?
いまいち断熱変化と等温変化の違いがよくわかりません。

教えていただけるとうれしいです。よろしくお願いします。

Aベストアンサー

ピストンを押して気体を圧縮したとします。
この時の変化は等温、断熱のどちらでしょうか。

多分この辺がわかりにくいのだと思います。
この操作自体はボイルの法則のところで当たり前に様にして出てきます。でも操作だけなんです。
「温度一定の条件で」とか「温度が変わらないようにして」という注が付いています。「温度が変わらないようにしようと思えばどうすればいいか」には触れられていません。

実際にやると等温、断熱の間の変化が起こります。
圧縮すると体積が減ります。いくらか温度も高くなります。自転車の空気入れ(金属製のもの)のようなものだと手で触って感じることが出来るほどです。しばらく待つとわからなくなります。
温度が上がったということは内部で熱が生じ、外に出てきたということです。温度が上がっていますから等温ではありません。外に熱が出てきていますので断熱でもありません。熱が外に出てきていますので出てこない場合に比べると内部の温度上昇は小さくなっているはずです。
ピストンとシリンダーの構造や材質を変えることによって熱が外に出てくるのをいくらか押さえることが出来ます。でも何時も時間の尺度が問題になります。時間が経つと外部の温度と同じになります。構造や材質を変えることによって外部の温度と同じになる時間を速くする事も出来ます。
普通に起こる圧縮の場合、断熱変化と等温変化の間の変化が起こっています。「全く熱の移動が起こらない」という条件と「十分に熱の移動が起こる」という条件は2つの極限的な条件です。理想的な条件です。

等温変化の場合、熱のやりとりの出来る大きな物体と接触しているとしています。「熱浴」と言います。
空気中でやるとき、少し待てば周りの空気と同じ温度になる、それによって空気の温度は上昇しないと考えるとが出来るのであれば空気が熱浴であることになります。空気の温度がどうしても高くなるというのであれば熱浴としては不充分だということになります。水の中に浸けるという場合であれば水槽の中の水が熱浴になります。

等温変化を実現するためには十分熱容量の大きな熱浴と接触させるという但し書きがたいてい書かれています。

#1のご回答で「氷水」を考えられているのも熱浴の工夫の一つです。水だと温度が上がってしまうかもしれないですが氷水だと氷が溶けてしまうまでは温度が上がらないので等温変化が実現するという工夫です。でもこれだと温度を選べませんね。温度コントロールの出来る水槽でやると氷水よりは等温条件は悪くなるかもしれませんが温度を選ぶことは出来ます。

等温変化はまだ工夫すればいくらか実現しているというイメージが取りやすいです。断熱変化は逆の場合の極限ですから実現の程度を知るのが難しいです。接触している2つの物体の間では必ず熱の移動があるはずですから完全な断熱は不可能です。完全に断熱させているとしたときの変化の予想値と実際とを照らし合わせることによってどの程度断熱条件が実現されているかを調べるということしか手がないのだと思います。熱力学では理想的に断熱されているとして温度変化がいくらになるかを求めることが出来ます。

質問者様は温度と熱の違いも混乱があるようです。
この違いは先にハッキリさせておく方がいいと思います。

ピストンを押して気体を圧縮したとします。
この時の変化は等温、断熱のどちらでしょうか。

多分この辺がわかりにくいのだと思います。
この操作自体はボイルの法則のところで当たり前に様にして出てきます。でも操作だけなんです。
「温度一定の条件で」とか「温度が変わらないようにして」という注が付いています。「温度が変わらないようにしようと思えばどうすればいいか」には触れられていません。

実際にやると等温、断熱の間の変化が起こります。
圧縮すると体積が減ります。いくらか温度も高く...続きを読む

Qクラウジウス-クラペイロンの式について

以前 QNo.125760 水の温度変化の質問の中でクラウジウス-クラペイロンの式について出ていましたが、いまいち理解できません。この式について、詳しく噛み砕いてお教え願えないでしょうか?
よろしくお願いします。

Aベストアンサー

クラウジウス-クラペイロンの式は、蒸気圧曲線の傾きを求める公式です。

クラウジウス-クラペイロンの式を使うと、『蒸気圧曲線が温度の単調増加関数であること』を、簡単に証明することができます。蒸気圧曲線が温度の単調増加関数であるということは、「温度が高くなれば飽和蒸気圧が高くなり、温度が低くなれば飽和蒸気圧が低くなる」ということです。ですから、これと、「飽和蒸気圧が大気圧と等しくなる温度で液体は沸騰する」ということをあわせて考えると、

「大気圧が低ければ沸点は降下し,高ければ沸点は上昇する」

ということができます。つまり、クラウジウス-クラペイロンの式を使うと、大気圧が変わると沸点が変わることを説明できます。

以下は、クラウジウス-クラペイロンの式に関する説明です。

温度 T のときの蒸気圧曲線の傾き dP/dT は、温度 T のときの気化熱(蒸発熱)L、温度 T のときの飽和蒸気の体積 vg、温度 T のときの液体の体積 vl と、式(1)の関係があります。

dP    L
― = ――――     (1)
dT  T(vg-vl)

この式をクラウジウス-クラペイロンの式といいます。ここで、温度 T は摂氏温度ではなく、絶対温度です。また気化熱には、モル当たりの気化熱、体積 vg と vl にはモル当たりの体積を使います(気化熱に1グラム当たりの気化熱を使ってもいいです。このときは体積 vg と vl には1グラム当たりの体積を使います)。

気化熱 L は正の値、絶対温度 T も正の値、飽和蒸気の体積と液体の体積の差 vg-vlも正の値ですので、式(1)の右辺は正の値になります。よって、dP/dT > 0 となり、蒸気圧曲線が温度の単調増加関数であることが証明されました。

式(1)は、「熱力学的に厳密な式」と呼ばれる類の、とても正確な式なのですけど、このままでは少し使いづらいので、近似式が使われることが多いです。

近似1:飽和蒸気の体積 vg は液体の体積 vl よりずっと大きいので、vg-vl=vg と近似する。
近似2:蒸気を理想気体だと考えて、vg=RT/Pと近似する。ここで R は気体定数、Pは飽和蒸気圧。

この二つの近似を使うと、式(1)の近似式は式(2)になります。

dP   L P
― = ―――     (2)
dT  R T^2

この式もクラウジウス-クラペイロンの式といいます。式(1)にあった飽和蒸気の体積 vg と液体の体積 vl が式(2)では消えているので、式(2)の方が、式(1)よりも使いやすい形をしています。

もうひとつ近似を入れると、蒸気圧曲線の傾きだけではなく、『蒸気圧曲線そのもの』を求める公式を得ることができます。

近似3:気化熱 L は、温度に依らない。

この近似は、前の二つの近似と比べると、ちょっと荒い近似なのですけど、ともかくこの近似を使うと、蒸気圧曲線を求める公式が得られます。

ln(P/101325Pa)=(L/R) (1/Tb - 1/T)     (3)

この式もクラウジウス-クラペイロンの式といいます。左辺のlnは、自然対数(eを底とする対数)をとることを意味します。またTb は、圧力が1気圧=760mmHg=101325Pa のときの沸点です。

クラウジウス-クラペイロンの式と呼ばれている式がいくつもあって、ちょっと紛らわしいのですけど、まあどれも似たようなものですし、式の違いが重要なときには、たいてい数式が書いてありますから、混乱することは少ないと思います。QNo.125760 に数式が書いていないのは、高校生向けに書かれたものだからでしょう。

クラウジウス-クラペイロンの式は、蒸気圧曲線の傾きを求める公式です。

クラウジウス-クラペイロンの式を使うと、『蒸気圧曲線が温度の単調増加関数であること』を、簡単に証明することができます。蒸気圧曲線が温度の単調増加関数であるということは、「温度が高くなれば飽和蒸気圧が高くなり、温度が低くなれば飽和蒸気圧が低くなる」ということです。ですから、これと、「飽和蒸気圧が大気圧と等しくなる温度で液体は沸騰する」ということをあわせて考えると、

「大気圧が低ければ沸点は降下し,高けれ...続きを読む

Qこの場合のギブスエネルギーの変化量を教えてください

大学二年生の化学熱力学の教科を学んでいるのですが。。。
全くわからない問題があります!
室温298K、0.022molの理想気体が圧力が17.0MPaから100KPaに変化した。
この過程でのギブスエネルギーの変化量はいくらか。
という問題です。
物質量はどこで使うのですか?
計算過程もお願いします。
また、こういう問題は何を考えれば解けるのかアドバイスお願いします。

Aベストアンサー

ギブス自由エネルギー(G)の定義は
G = H - TS
H: エンタルピー (J)
S: エントロピー (J/K)
T: 環境温度 (K)

ギブス自由エネルギー変化量(ΔG)は
ΔG = ΔH - TΔS

エンタルピー,エントロピーは対象とする系の
1)温度
2)圧力
3)物質の相の数
4)各相での各成分量
が決まると計算できます。

言いかえると、上記1)2)3)4)のどれかが変化するとエンタルピー,エントロピー、そしてギブス自由エネルギーも変化します。

問題を上記1)2)3)4)に照らし合わせると、
1)温度は変化したと記述していないので一定
2)圧力は17MPaから100KPaに変化
3)相(気相、液相、固相)の数は理想気体が凝縮して液体になった、と記述していないので一定
4)各相での各成分量、この場合、気相の理想気体の種類が増えた減った、0.022molが増えた減ったと記述していないので一定

3)4)はちょっと強引なところありますが、幅広く題意を捉えるための説明です。

まずエンタルピー変化ΔHを計算します。
結論から言うとΔH = 0です。
理想気体1mol当たりのエンタルピーは温度変化した場合にのみ変化し、圧力により変化しません。
これは理想気体の状態式(PV=RT)とエンタルピー計算式(微分形で与えられます)から導出されます。
圧力は変化していますが温度が変化していないのでΔH = 0。

次にエントロピー変化ΔSを計算します。
理想気体1mol当たりのエントロピーは温度変化、圧力変化で変化します。
温度変化は無いので温度変化相当のΔSは0。
圧力変化相当のΔSは理想気体の状態式(PV=RT)とエントロピー計算式(これも微分形)から導出され
-nR*ln(P1/P0)・・・微分形を圧力P0からP1まで積分した結果
となります。

n 理想気体mol数: 0.022 (mol)
R 理想気体定数: 8.31 (J/mol.K)
P0 変化前の圧力: 17MPa = 17000KPa
P1 変化後の圧力: 100KPa

圧力変化相当のΔS = - 0.022 x 8.31 x ln(100/17000) = 0.934 (J/K)

まとめますと

ΔG = ΔH - TΔS
ΔH = 0
T 環境温度: 298 (K)
ΔS = 0.934 (J/K)
ΔG = 0 - 298 x 0.934 = - 278.3 (J)

まどろっこしい説明になりましたが理想気体の圧力変化に伴うギブス自由エネルギー変化量(ΔG)は
ΔG = nRT*ln(P1/P0)
でさっと計算できます。

ギブス自由エネルギー(G)の定義は
G = H - TS
H: エンタルピー (J)
S: エントロピー (J/K)
T: 環境温度 (K)

ギブス自由エネルギー変化量(ΔG)は
ΔG = ΔH - TΔS

エンタルピー,エントロピーは対象とする系の
1)温度
2)圧力
3)物質の相の数
4)各相での各成分量
が決まると計算できます。

言いかえると、上記1)2)3)4)のどれかが変化するとエンタルピー,エントロピー、そしてギブス自由エネルギーも変化します。

問題を上記1)2)3)4)に照らし合わせると、
1)温度は変化したと記述していないので一定
2)圧力は17MPaか...続きを読む


人気Q&Aランキング