出産前後の痔にはご注意!

クロネッカーのデルタ:δαβは
δikδkj =δij = (1;i=j のとき or 0 ; i≠j のとき) 
という性質を持っているのですが、上式はどのように導出するのでしょう。考え方を教えて頂けないでしょうか。
また、 i≠k のときは、i , j がどんな値をとっても上式の値は“0”にしかならないのではないかと思うのですが、どうなんでしょう?

このQ&Aに関連する最新のQ&A

A 回答 (5件)

もうちょっと詳しく説明したほうが良かったですね。



物理などで使う数学では、
「添え字に同じ文字が2つ現れたら、その文字について和をとる」
という規則が暗黙のうちに使われることがよくあります。
(相対論のテンソル演算における用法が広まったもの)

今の場合だと、添え字i,j,kがaからbまでの値を取るとした場合、
δikδkj は Σa≦k≦b δikδkj を意味していることがある、
ということです。
これなら
>δikδkj =δij = (1;i=j のとき or 0 ; i≠j のとき)
が成り立つこともわかるでしょう?

kについて和をとってしまえば、式の評価にkの値が関わってこないのは
当然のことですね。

この回答への補足

丁寧なご回答、ありがとうございます。
そしてすみません。また補足させていただきたいのですが、
このクロネッカーのデルタ記号は固体力学などで使用される記号で、
三次元の応力テンソルσij (i,j=1~3)を考える場合、δijσij と表記することによって、
σ11、σ22、σ33という主応力を表すために使われる記号です。
そういうわけで、δikδkj が Σa≦k≦b δikδkj を意味しているとはちょっと考えにくいんですよね。

補足日時:2006/02/01 19:46
    • good
    • 3

物性ではありませんが,物理をやっています.


皆さんが仰るように k についての和をとっていると思います.

参考URLでも前半で必要な数学(テンソル解析)をやるときに
総和規約と縮約の話は出てきいたので,
後半の物理的な内容の部分を覗いてみると
応力あたりの話でも総和規約を使ってそうです.

参考URL:http://www.md.ams.eng.osaka-u.ac.jp/~nakatani/Le …
    • good
    • 0
この回答へのお礼

なるほど。参考になりました。
不精なもので、申し訳ありませんが ANo.5 さんへのお礼をもちまして
皆様へのお礼とさせていただきます。
ありがとうございました。

お礼日時:2006/02/02 11:39

>δikδkj=δij=(1;i=jのとき or 0;i≠jのとき)



というのは、明らかに、kについての和(縮約)をとっています。 
    • good
    • 0

これで良いかどうか分かりませんが、


(1) i=jのとき、
δikδkj = δikδki = δi1δ1i+δi2δ2i+δi3δ3i=1
(iは1,2,3のどれかだから)
(2) i not = j のとき、
δikδkj = δi1δ1j+δi2δ2j+δi3δ3j
i=1のときはjは1ではないから,
δi1δ1j+δi2δ2j+δi3δ3j=0
以下、i=2,3のときも同様に0
したがって、δikδkj = 0
    • good
    • 1

>δikδkj =δij = (1;i=j のとき or 0 ; i≠j のとき) 



これはkについて和をとっているんでは?

この回答への補足

補足させていただきます。
これは、δik×δkj の解がkの値に支配されないという意味だと思います。 

補足日時:2006/02/01 18:34
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエディントンのイプシロンについて

エディントンのイプシロンを用いた公式について質問があります.

自分は普段なんとなくで
ε_ijk×ε_lmk = δ_il×δ_jm - δ_im×δ_jl
という公式を使っていたのですが,
「そういえばこの式ってどうやって導くのだろう?」
と思い,まず自分で考えたのですがうまくいかず,
インターネットで検索しても「こういう公式があるよ」としか書いてあるページがみつかりませんでした.
手持ちの書籍ももちろん調べましたが,それも同様でした.
どなたか,ご教授願えないでしょうか?

参考URL(このページの「二つのエディントンのイプシロンの添字について縮約すると以下の式が得られる。」と書いてある行の真下にある公式です.)
http://ja.wikipedia.org/wiki/%E3%82%A8%E3%83%87%E3%82%A3%E3%83%B3%E3%83%88%E3%83%B3%E3%81%AE%E3%82%A4%E3%83%97%E3%82%B7%E3%83%AD%E3%83%B3

よろしくお願いしますm(__)m

エディントンのイプシロンを用いた公式について質問があります.

自分は普段なんとなくで
ε_ijk×ε_lmk = δ_il×δ_jm - δ_im×δ_jl
という公式を使っていたのですが,
「そういえばこの式ってどうやって導くのだろう?」
と思い,まず自分で考えたのですがうまくいかず,
インターネットで検索しても「こういう公式があるよ」としか書いてあるページがみつかりませんでした.
手持ちの書籍ももちろん調べましたが,それも同様でした.
どなたか,ご教授願えないでしょうか?

参考URL(このページの「二...続きを読む

Aベストアンサー

Eddingtonのイプシロンは別名Levi-Civitaの記号とも呼ばれていますね。ご質問の導出は参考URLに詳しく載っていますので参照してみてください。

http://www12.plala.or.jp/ksp/lib/Levi-Civita.pdf

参考URL:http://www12.plala.or.jp/ksp/lib/Levi-Civita.pdf

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qeのマイナス無限大乗

lim(t→∞) 1-e^(-t/T)
T:定数

というのがあって、極限値が1になることは手計算で分かったのですが、
数学的に1になる理由が分かりません。

e^(-∞)=0になる理由を数学的に教えてください。

Aベストアンサー

e^(-n) = (1/e)^n
であり、
0<|1/e|<1
だから

Q波数の意味と波数ベクトル

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m]の波の波数はk1=1/100[m]となり、これは「100m中に1個の波がある」という意味であり、λ2=2[m]の波の波数はk2=1/2[m]となり、「2m中に1個の波がある」という意味で、いずれもk<1なのはどれくらいの割合で波が1つあるのかという事を表してるのだと思っています。k2は2[m]中に1つの波があるので、仮にその波を100[m]にも渡って観察すれば、その中に50個も波が存在する。一方、k1は100[m]内に1個しか波が存在しない。よってk2の波の方が波の数が多い波である。以上が波の「数」なのに次元が長さの逆数を取る理由だと解釈してるのですが、合っているでしょうか?

また、(正否は分かりませんが)波数kを以上のように考えているのですが、波数ベクトルという概念の理解に行き詰まっています。個数であり、長さの逆数を取る量がベクトル量で向きを持つというイメージが掴めません。本にはkx、ky、kzと矢印だけはよく見かけるのですが、その矢印がどこを基準(始点)としてどこへ向いているのか(終点はどこなのか)が描かれていないので分かりません。波数ベクトルとはどういう方向を向いていて、それはどういう意味なのですか?一応、自分なりに描いてみたのですが下の図で合っているでしょうか?(1波長置きに存在するyz平面に平行な面に直交するベクトルです)

私の波数の考えが合っているか、波数ベクトルが図のようで合っているかどうか、波数ベクトルとは何かをどなたか教えて欲しいです。

確認したい事と質問があります。

波数kというのはある単位長さ当たりに存在する1周期分(1波長分)の波の数で合っていますでしょうか?数と言っても単純に「波が1000個もある!」という意味ではなく、「ある単位長さ中に1個の波が含まれる」という感じで個数というより割合に近い物だと解釈してるのですが大丈夫でしょうか?
一般に波数kは波長λを使って、k=2π/λ、もしくはk=1/λと表されます。用いる単位系によって違いますが、ここでは分かりやすくk=1/λを例に取ります。例えばλ1=100[m...続きを読む

Aベストアンサー

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このとき、x方向の波数は1、y方向の波数も1、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,1,0)
のように表すことができます。

さらに発展して考えたとき、x方向とy方向の波数が違っていてもいいですよね(下のリンクのような)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2B0.3*y^2%29%29
こうなるとx方向の波数は1、y方向の波数は0.3、z方向に波はないので波数は0となり、波数ベクトル
K=(kx,ky,kz)=(1,0.3,0)
のように表すことができます。

このように波数ベクトルは、現実の波をx,y,z成分で分けたときのそれぞれの波長(λx,λy,λz)から求めたものなので、あくまで波がどういう形になるのかしか分かりません。
なので波の始点や終点という概念はありません。
この波数ベクトルの利点は、たとえば現実空間で
y=sin(1*x)+sin(2*x)+sin(3*x)+sin(4*x)+・・・+sin((n-1)*x)+sin(n*x)
を考えるととても複雑なグラフとなりますが、波数空間ではkx=1,2,・・・.nの点の集合として表すことができます。(よくいわれるスペクトル表示的なものです)



波数ベクトルを現実世界の何かとして考えることはあまりないので割り切ってしまった方が楽かもしれません。

上の内容については私の前に書いていらっしゃる方がいるので波数ベクトルについて述べたいと思います。
あなたはどうやら波をx軸方向に進む高校で習うような波で想像しているものと思います。
しかし、現実で見かける波(たとえ水面の波紋)はz=Asin( √(kx^2+ky^2) )のようにx方向y方向に伝搬しています。このとき波は同心円状に広がるので、x方向、y方向の波数はそれぞれkという定数で表すことができます。(下のリンクを参考に)
http://www.wolframalpha.com/input/?i=sin%28sqrt%28x^2%2By^2%29%29
このと...続きを読む

Q分配関数(状態和)がわかりません。

統計力学とかで出てくる分配関数(状態和)がありますが、物理的な意味がよくわかってません。
Σexp(-β・ei)とありますがどういう意味なんでしょうか?

またある問題でエネルギー準位ε=(n+1/2)hνのN個の独立な調和振動系子の系があり
この調和振動子一個に対する状態和が
Z=1/{2sinh(hν/2kB・T)}
となることを示せという問題があるんですが問題の意味すらよくわかりません。
一個に対する状態和?という感じです。
どうかお願いします。

Aベストアンサー

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというように表すことが出来ますね。
このときの状態和は
 Z=ΣP(x)
  =P(1)+P(2)+…+P(6)
  =6*1/6
  =1
ということになります。

>速度やモーメントならしっくりきますが状態というのは一体何なんでしょうか?
さいころで言うと状態は「1の目が出ること」などに対応します。
この場合は6つの状態を取り得ますね。

>一個に対する状態和?
粒子が一個であっても e_n =(n+1/2)hν という結果を見れば、
基底状態 e_0 = hν/2 の状態にあるかもしれないし、
励起状態の1つ e_1 = (1+1/2)hν = 3/2*hν のエネルギー状態にあるかもしれない、
というようにとり得る状態は1つではないことがわかります。
あとは、先のさいころの例と同様に
e_0 の状態にある確率が exp(-βe_0)
e_1 の状態にある確率が exp(-βe_1)
   :
ですからこれらの確率の無限和をとるだけです。


この質問とは関係ないですが、
その後、相対論の理解は進みましたか?

>状態というのが量をもっているわけなんですが
>状態というのはどういう量なんですか?
すでに、siegmund さんが書かれておられるように
エネルギー e_i の状態の実現確率がボルツマン因子 exp(-βe_i) に比例します。
このあたりの手順は統計力学の教科書に載っていると思います。
少し混乱しておられるようなので、簡単な例を出してみます。

さいころを1個振ることを考えてみます。
さいころの目がX(x=1~6)になる確率を P(x) とすると、
1の目が出るという状態の実現確率は P(1) などというよう...続きを読む

Q実質微分とは

こんばんは。

実質微分とは分かりやすく言うとなにを表しているのでしょうか?
普通の微分、偏微分とはどのように違うのでしょうか?
見識のある方、宜しくお願いします。

Aベストアンサー

私なりに微分について回答させてください。
y=sin x という関数は、xが限りなく0に近いときにはy=xと近似できることは知っていますか?おそらく偏微分という言葉を知っている方ならご存知だと思います。
 微分というのはこのy=sin xという関数をy=x に近似した行為に似ます。今の例では、xが限りなく0に近いという条件がついていましたが、微分をする際にはこの条件が「xの変化が限りなく小さいとき」という条件になるのです。
 たとえば、y=x^2という関数において、x=2.0からx=2.000000000000000001に増加したときは、yの増加のしかたはy=x^2とy=2xではほぼ変わりません。
ではx=2.000000000000000001からx=2.000000000000000002に増加したらどうかというと、これも二つの関数の間には差はほぼありません。0.000000000000000001増加するところのどこを取ってもy=2xとy=x^2という関数はほぼ同じものになります。
 x=2からx=5に変化するときは二つの関数は変化の割合もまったく異なる関数に見えますが、微小変化のときは同じ関数とみなせます。
 上空から地上の景色を見たときと、地上にいるときの景色は違います。上空からは広い範囲が見えて、人は米粒のように見えますが、地上にいたら狭い範囲しか見えないが、人の表情や町の様子がはっきり見えます。
 何が言いたいかというとy=x^2に見えていた関数が実は限りなく細かく区切って見てみるとy=2xという関数であった、ということです。
 1人1人の人間に見えても実は無数の分子からできているように、通常の関数の世界と微分した世界では見方が違います。人間界が通常の関数の世界で、微分が分子レベルの世界です。要は関数に対する視点の違いです。
 細かく分けてみたらy=x^2がy=2xに見えた。その細かく分割したのをひとつひとつつなげたのが積分です。
 ちなみにdxというのは微小変化ですよね。これが細かく区切った最小単位だと考えれば、(dy/dx)*dx=dyなどといった意味不明な計算が成り立つのも納得いただけるかもしれません。
 以上、微分の説明でした。とても分かりにくくてすみません。結局言いたかったことは、微分がミクロで積分がマクロの世界だということです。
 また、偏微分はある一方向のみに細かく区切ったときのf(x,y)の振る舞いかたを表します。
 長くてすみません。

私なりに微分について回答させてください。
y=sin x という関数は、xが限りなく0に近いときにはy=xと近似できることは知っていますか?おそらく偏微分という言葉を知っている方ならご存知だと思います。
 微分というのはこのy=sin xという関数をy=x に近似した行為に似ます。今の例では、xが限りなく0に近いという条件がついていましたが、微分をする際にはこの条件が「xの変化が限りなく小さいとき」という条件になるのです。
 たとえば、y=x^2という関数において、x=2.0からx=2.000000000000000001...続きを読む

Qひずみの適合条件

こんにちは!大学3年のものですけど、今度「固体の力学」の分野で、ひずみの範囲のテストがあります。過去問に
「ひずみの適合条件を説明せよ」という問題があったんですが、教科書にはだらだらと書いてあってよく理解できません。
どなたか簡潔に説明してもらえないでしょうか。
どうぞよろしくお願いします。

Aベストアンサー

ひずみの独立な成分は6個[εxx,εyy,εzz,εxy、εxz,εyz]
変位は3つ。[ux,uy,uz]
ひずみと変位の関係式 
εij=[∂iuj+∂jui]/2
の6個
問題を変位で表した式を解いて、変位が求まった場合には、その後にひずみを求めるならこの式をつかって、計算できる。
応力ひずみ関係から問題を解いてひずみが求まった場合、
ひずみの6成分があたえられたとき、変位の3つの未知数を6個の式で求めることになり、任意のひずみからは、変位を求められない。すなわち、
ひずみに条件が必要。
物理的には、もともとおなじ位置が変位(変形)後にもおなじ位置にいる条件。
通常、3つの条件があればいいが、独立でない3つを加えて、6個の式で表す。

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

QΠ←これは一体?

数学書の中にΠ(パイの大文字)みたいなという記号がΣのような使い方をされていたのですが、この記号は一体どういう意味なのでしょうか?

Aベストアンサー

Σが数列a_nに対し
Σa_k=a1+a2+a3+…anとなるのに対し
Πa_k=a1・a2・a3・…anとなります

あまり使われないのではないかと思います


人気Q&Aランキング