微積分の問題です。問題は英語で書かれています。

原文: Show that the angle of incidence equals the angle of reflection for the parabola y^2=4x at the point (0.5, √2). The angle of incidence is measured between the horizontal line through this point and the tangent line at this point. The angle of reflection is measured between the focal line to this point and the tangent line at this point. Note: The focus for this parabola is at (1, 0).

日本語訳: 放物線 y^2=4x 上の点(0.5, √2)での入射角と反射角が同じであることを証明せよ。入射角は、この点を通る水平線とこの点に対する接線との間の角度を指し、反射角は、この点への焦点線とこの点に対する接線との間の角度を指す。注意: この放物線の焦点は(1, 0)である (と訳してみました)。

先生は

tan θ=|(M1-M2)/(1+M1-M2)|

を使え、とヒントをくれました。
でも解法は教えてくれませんでした。
自分でやったところまで書きます。
まず、ここでの水平線は y=√2 で良いですか?

放物線上の点(0.5, √2)から焦点(1, 0)への傾きは
y(1-0.5)=x(0-√2)
0.5y=-√2x
y=-2√2x
Y軸との交点 b は傾きに焦点の位置を代入して
0=-2√2*1+b
b=2√2
よってy=-2√2x+2√2x

放物線上の点(0.5, √2)の接線は
グラフを見ながら勘で y=√2x+√2/2 としてみると
なんとぴったりでした。
しかし、理由が分かっていません。

…分かるのはここまでです。
これから先はどうすればよいのでしょうか?
どなたか教えてください。よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

やり方が正しいか自信がないですが。



まず、放物線上の点(0.5, √2)の接線について、
放物線の式は y^2=4x で、点(0.5, √2)での傾きを調べたいので、x>0,y>0に限定して、 y=2x^(1/2)と変形します。
これをxについて微分して、y'=1/√x
よって、x=0.5=1/2での傾きは 1/(√1/2)=√2 とでます。
接線の式を y=√2x+p とおいて、x=0.5,y=√2を代入すれば p=√2/2となり式はy=√2x+√2/2 とでます。

入射角はこの接線の傾き(tan)そのものです。
反射角は接線y=√2x+√2/2 と焦点線y=-2√2x+2√2x のなす角です。
このtanを求めるヒントがtan θ=|(M1-M2)/(1+M1-M2)| です。
つまり、反射角のtanが√2であることを示せば良いと思います。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。

そう、接線の計算は微分するんでした。
なんとか解けました!
ありがとうございました。

お礼日時:2002/03/12 03:24

大学への数学・数学ショートプログラムのP154ページ参照!但し、質問者が日本人であることに限る。



あと、接線の式を出したりするのはあまり、上手くない。そんなの出したりするのは時間がもったいない。このような考え方は極力排除されたい。
    • good
    • 0
この回答へのお礼

「大学への数学・数学ショートプログラム」というのが何だか、まず分かりませんでした。

お礼日時:2002/03/12 03:34

水平線と焦点線のなす角の二等分線を求めてみて,


それが接線と一致することを示しても良いのでは?
水平線は「 0・x + 1・y - √2 = 0」
焦点線は「2√2・x + 1・y - 2√2 = 0」
と書けます.
二等分線上の点(X,Y)はこの両者から等距離にあるので,
「点と直線の距離の公式」を用いると
|0・X + 1・Y - √2|/√(0^2 + 1^2) = |2√2・X + 1・Y - 2√2|/√{(2√2)^2 + 1^2}
整理して
3|Y - √2| = |2√2・X + Y - 2√2|
|3Y - 3√2| = |2√2・X + Y - 2√2|
絶対値が等しいということは(1)本当に等しい(2)プラスマイナスが違う
(1)の方を考えると
3Y - 3√2 = 2√2・X + Y - 2√2
Yについて整理すると
Y = √2・X + ( √2 /2)
となり接線と一致しますね.
(2)の方は(1)と垂直な「もう一本の2等分線」です.
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。

そういう解き方もあるんですね。

お礼日時:2002/03/12 03:29

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「頭悪いね」「バカだね」 どっちがよりムカつく?

こんにちは、

単純な質問です。

「お前、頭悪いな」

「お前バカだな」

どっちがより言われたらムカつきますか?

Aベストアンサー

どっちもそれなりにムカつきますけど・・・「頭悪いな」かな~

そう言う事を他人に平気で言う奴ほど、バカで頭の悪い人はいないと思いますけど・・・ね?
我がふりなおせよ~ってな感じです。

でもやっぱり傷つくな~否定はしないけど(苦笑)

Q1=√1=√(-1)(-1)=√(-1)√(-1)=i・i=-1

1=√1=√(-1)(-1)=√(-1)√(-1)=i・i=-1
∴ 1=-1

は明らかにおかしいですが具体的にはどこがおかしいのでしょうか?

色々調べてみたところ,

√(-1)(-1)=√(-1)√(-1)

というところがおかしいみたいで,「√(ab)=√a√b」が成り立つのは,"a,b≧0"のときだけということまではわかりました.
なので上のような変形はできないとのことです.

では,a≧0,b<0のときはどうなのでしょうか?

つまり,a≧0を実数として,

√(-a)=√(-1)a=√(-1)√a=i√a

はなぜ大丈夫なのでしょうか?

上の議論だと,-1<0なので「√(ab)=√a√b」が適用できず,単純に

√(-1)a=√(-1)√a

としていいのだろうかと感じました.

それとも他の場所でしてはならないことをしていたのでしょうか?

混乱してしまったので教えてください.

Aベストアンサー

√(-a) = √(-1) √a は、いろいろと論点を含んだ式です。

まず、等式の成立不成立以前に、両辺がそれぞれ示す値が特定できない。
-a の平方根も、-1 の平方根も、複素数の範囲で2個づつ在り、
√(-a) や √(-1) という書き方では、そのどちらを示しているのか
判断することができません。
それを踏まえて、2通り×2通り=計4通りの式の意味のうち、
2個は成立し、2個は成立しないのです。

この事情は、1 = √(-1) √(-1) = -1 の時と全く同じです。
違うのは、1 = √(-1) √(-1) を満たすような2個の
√(-1) の選び方と
√(-1) √(-1) = -1 を満たすような2個の
√(-1) の選び方に
共通のものが無いため、全体として 1 = √(-1) √(-1) = -1 を満たす

√(-1) の値の選び方の組が存在しないのに対して、
√(-a) = √(-1) √a のほうには、式が成立するような
√(-a) と √(-1) の値の選び方が存在するということです。
だから、ある意味「大丈夫」だとも言えます。

しかし、√(-a) = √(-1) √a が「成立する」と言うときに、
式が成立するような √(-a) と √(-1) の選択が在ることを言っているのか、
√(-a) と √(-1) の任意の選択に対して成立することを言っているのか、
その辺がハッキリしません。
前者の意味では大丈夫であり、後者の意味では大丈夫ではないのですが。

また、√a も伏兵です。a が非負実数なので、ウッカリしていると、
√a は a の平方根のうち正のほうで問題ないような気がしてしまいますが…
√(-a) = √(-1) √a は、両辺が虚数となる式なので、
√a の √ も、複素平方根関数を意味しているのかもしれません。

複素 √z の z に、たまたま正の実数値が代入されたときだけ
突如多価でなくなって、正のほうの値だけを表すというのも、
連続性や微分可能性の意味で問題ある解釈です。

探せば、まだまだ問題点が見つかりそうです。
要するに、多様な解釈を許してしまいそうな、記号法に説明力の足りない式を、
式だけ書きっぱなしにして注釈を添えなかったことに、問題があったのです。
数式は、数学文の一部に過ぎませんから、一般に、式だけで完結させようと
がんばらないで、意図が十分伝わるように、注釈を書き添えたほうがよいのです。

√(-a) = √(-1) √a は、いろいろと論点を含んだ式です。

まず、等式の成立不成立以前に、両辺がそれぞれ示す値が特定できない。
-a の平方根も、-1 の平方根も、複素数の範囲で2個づつ在り、
√(-a) や √(-1) という書き方では、そのどちらを示しているのか
判断することができません。
それを踏まえて、2通り×2通り=計4通りの式の意味のうち、
2個は成立し、2個は成立しないのです。

この事情は、1 = √(-1) √(-1) = -1 の時と全く同じです。
違うのは、1 = √(-1) √(-1) を満たすような2個の
√(-1) の選...続きを読む

Q仕事が遅い、頭悪い、力仕事できない 不器用すぎるこんなパートメリットありますか?

仕事が遅い、頭悪い、力仕事できない
不器用すぎるこんなパートメリットありますか?

Aベストアンサー

仕事が早い、頭が良い、力仕事もできる
器用すぎるこんなパートに比べたら、見劣りしますが、
居ないよりはずいぶんましだと思いますよ。

Q放物線 y=x^2-2x+2 をx軸方向に1、y軸方向に ? だけ平行移動して得られる放物線の頂点

放物線

y=x^2-2x+2
をx軸方向に1、y軸方向に ? だけ平行移動して得られる放物線の頂点は、直線y=3x上にある。
この問題の?の解き方がわかりません、教えてくださる方よろしくお願いします(^_)
?=5です

Aベストアンサー

y=x^2-2x+2
基本形に直します
y=(x-1)^2+1
頂点の座標が(1,1)というのが判ります。
x軸方向に1移動なので
y=(x-2)^2+α
頂点が直線y=3x上にあるので、
y=3×2=6なので、α=6になります。
放物線の基本形の式は
y=(x-2)^2+6
となり、最初の基本形の式
y=(x-1)^2+1
と比較すると、x軸方向に1、y軸方向に5、頂点が移動しているのが判ります。

放物線の式を基本形に直すコツを掴むのが、問題のコツですね。

Qこうゆう考えの人って頭悪いと思わないですか?

こうゆう考えの人って頭悪いと思わないですか?
CMとかで嫌いなタレント出てるからとかむかつくからという理由で商品買わない人
僕には理解出来ないですが何か?
商品なんて関係ないしあれですか?坊主にくけりゃ袈裟憎いって?
でも向こうもそうゆう考えもつ人にはかってもらいたくないからいいかなと思うけど

Aベストアンサー

なるほど、そういう考えもできますか!

広告というのは、その商品なりサービスが、一番いい方法で訴求できて、消費者に認知・浸透してアクションを起こしてもらうことが、最終的な目的ですよね。

そしてそのためには、(関係者のしがらみはともかくとして)それにマッチする、イメージを伝えられるに相応しいタレントを起用するのが普通です。
ですから、広告でそのタレントが出ることは、その商品なりサービスのイメージを背負っているということになります。

なので、質問者さまがおっしゃっている「タレントが嫌いだから商品を買わない」という人が出てきても、何らおかしくありません。
別に頭が悪いわけではありません。
よく、不祥事を起こしたタレントが出た時、そのタレントのCMを一斉に引き上げますね。それによって商品イメージが下がることを恐れてのことです。

Q数学III「2つの放物線y=x^2とx=2y^2ーyによって囲まれる部分の面積Sを求めよ」

数学III「2つの放物線y=x^2とx=2y^2ーyによって囲まれる部分の面積Sを求めよ」という積分の問題の解き方がわかりません。教えてください。略解は1/2でした。

Aベストアンサー

囲まれる部分のグラフを描いて見ましたか?

そうすれば、積分をy軸方向に行えば一回の積分でSが求まります。
S=∫[0,1] (√y-(2(y^2)-y))dy
=1/2
途中の積分は簡単ですからやってみて下さい。

なお、x軸方向に積分を行おうとすると面積を3つに分けて3回積分して加えて引くといった事をしないといけません。
或いはy=xの直線で面積領域を2つに分割してx方向とy方向の積分の和としてSを求める方法もあります。
最初の積分なら一回の積分だけでSが求まります。

Qわざわざナイフからフォークに利き手を持ち替えないと食事出来ない人って、頭悪いの?躾がなってないの?

わざわざナイフからフォークに利き手を持ち替えないと食事出来ない人って、頭悪いの?躾がなってないの?



「俺、右利きだから」とかいう理由でフォークをいちいち右手に持ち替えないと食べられない育ちの悪いクソとは食事したくない。



右利きならナイフが右手、フォークが左手だろ。子どもでも知ってるわ。

それが出来ない成人とか脳腐ってるでしょ?


こんな腐った食事の仕方してる人って親に食事の仕方すら教わってないからこんな気持ち悪いことするんでしょうか?

それとも教わっても理解できないくらいに頭が悪いからなのか?

Aベストアンサー

私はオジサンです。
両親は2人とも地方出身です。イギリスではありません。日本です。
ナイフとフォークを使う食事なんて、した事がないし、必要もなく育ちました。
質問者様とは生きてる世界が違うようですね(笑)。
それとも、わざと炎上させるように挑発的に書いているのでしょうか?
質問者様は、カップ麺って、食べた事ないんでしょうね。
質問者様は、1日の食事代1000円未満なんて、経験ないんでしょうね。
世の中、あなたのような人ばかりではないのですよ。
自身の価値観だけで、相手を否定するのは、テーブルマナーより酷いマナーですよ。

Q放物線y=x² /円x²+(y-5/4)²=1 の共有点の座標を求めるためx²を消去するとき、yはx

放物線y=x² /円x²+(y-5/4)²=1 の共有点の座標を求めるためx²を消去するとき、yはx²の範囲で、0<y,y=0という事を最初に求める必要がありますか?

Aベストアンサー

初めにグラフをイメージする。
y = x² は頂点が(0,0)の下向きの放物線
x² + (y - 5/4)² = 1 は中心が(0,5/4)の半径1の円

y=x² の範囲から、y≧0 なので、範囲は指定(考慮)しなくてよい)

よって単純に
y = x²
x² + (y - 5/4)² = 1
の連立方程式を解けばよい。

y + (y - 5/4)² = 1
y + y² - 5y/2 + 25/16 = 1
y² - 3y/2 + 9/16 = 0
16y² - 24y + 9 = 0
(-4y + 3)² = 0
y = 3/4  重解

y = x²
(3/4) = x²
x= ±√{3/4}
 = ±√3 / √4
 = ±√3/2


検算してみる。
y = x²
 (3/4) = (√3/2)²
x² + (y - 5/4)² = 1
 3/4 + (1/4) = 1

共有点の座標は
(-√3/2 , 3/4)(√3/2 , 3/4)

Q30代なかばで派遣してます。頭悪いし、毎日サービス残業してもいいんだけど、あまり夜遅くまですると寝坊

30代なかばで派遣してます。頭悪いし、毎日サービス残業してもいいんだけど、あまり夜遅くまですると寝坊してしまうし、このまま派遣続けようかと考えてます。こんな人生もありですかねぇ?子供好きだけど、子孫も残さないつもりです。

Aベストアンサー

将来的な計画などを考えても、自分で良しと思えるならありだと思います。

ただ、生涯賃金にして二倍以上の差がつくと言われている非正規と正規では
老後の生活や、中年を過ぎる辺りからの生活に差が出てきます。
周囲との比較というのは自分で気を向ける以上に気になるものです。

また、実生活面でも万が一のことがあった場合など
様々な場面で不利な状況に立たされる可能性も考えるべきです。

そういった点から、生涯派遣労働というのは
今の社会、制度の状態ではお勧めしたいとは思えません。
ただ、正規労働よりもストレスが少ない場合があることも確かです。
ライフスタイルやワークスタイルは個人が選んでよいものですから
そういったリスクを考えてもなお、自分に合っている
もしくは、そういったスタイルが良いと思うのであれば
一つの生き方だと思います。

Qある放物線をX軸方向に-1、Y軸方向に3だけ平行移動すると放物線Y=2X^2-6X+7になる。もとの

ある放物線をX軸方向に-1、Y軸方向に3だけ平行移動すると放物線Y=2X^2-6X+7になる。もとの放物線の方程式を求めよ
この問題が分かりません。教えてください!

Aベストアンサー

No.2 おっとと、こっちもミスした。足し算間違えた。

y=2x² - 10x + 12


人気Q&Aランキング

おすすめ情報