痔になりやすい生活習慣とは?

線形微分方程式の線形の定義がわかりません.
何を基準に線形,非線形と定義しているのでしょうか?

微分方程式に,線形代数で扱う線形性があれば,
線形微分方程式と考えていいのでしょうか?

このQ&Aに関連する最新のQ&A

n/a 意味」に関するQ&A: N/Aの意味

A 回答 (2件)

D=d/dxと書くと、{a1*D^n+a2*D^(n-1)+…+an*D+a(n+1)}f=gの形の微分


方程式が線形といわれます。
D^n=d^n/dx^nの意味です。
大雑把にいうと、関数全体の集合は線形空間の性質がありますから、線
形空間と考えられます。無限次元の関数空間です。
そして、微分作用素a1*D^n+a2*D^(n-1)+…+an*D+a(n+1)を改めてDと
書くと、D(f+g)=Df+Dg、D(af)=a*Dfが成り立ち、関数空間の間の線型
写像と考えられます。このようなことから、上の形の微分方程式は線形
と呼ばれます。
つまり、微分作用素が関数空間の間の線型写像かどうかということで
す。
このように問題を捉えなおすことで、一般的な解法ができたり、解の存
在が示せたりして、このような考えをするのが関数解析といわれる数学
の分野です。
    • good
    • 0
この回答へのお礼

すごく参考になりました.
また,関数解析に興味がわいてきました.
オススメの参考書など紹介していただけたら,
勉強の励みになります.

ありがとうございました.

お礼日時:2007/05/13 19:48

裳華房、共立出版の関数解析の本が有名かと思います。


関数解析の入門的なやさしい本は思いつきません・・・
私は共立出版の方は持ってますが、大学時代は完全に読破できずに挫折
しました。
関数解析に進むには、まず微分積分、線形代数、位相などの基礎がしっ
かりできていないと全く進まないので、まず基礎固めが絶対的に必要で
す。
継続して勉強に励まれることを・・・
    • good
    • 0
この回答へのお礼

お返事ありがとうございます.
基礎をしっかり固めてから,関数解析に挑戦したいと思います.

お礼日時:2007/05/19 18:09

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q微分方程式の線形、非線形の証明

「y' * y'' = 1  …(*) という微分方程式が線形であるか、非線形であるかを証明せよ。」
(ただし、*は掛け算、y'はxの1階微分、y''はxの2階微分であるとする。)

【自分の考察】
2階線形微分方程式の定義は、
P0(x)y'' + P1(x)y' + P2(x)y = Q(x)
であるので、(*)はこの形に当てはまらず、
y' * y'' 同士の掛け算になっているので、
『非線形』だと思う。

ここまでは、予想がついたのですが、
もっと数学的に証明することはできるのかと
疑問に思いまして、質問させていただきました。

線形関数で学習した、
f(x1 + x2) =f(x1) + f(x2)
f(ax) = af(x)
などを、使うのかと思ったのですが、
よくわかりません。

簡単そうに見えるのに、
まだ先が見えてこないので、
どなたかご教授いただければと思います。
よろしくお願いします。

Aベストアンサー

>線形関数で学習した、
>f(x1 + x2) =f(x1) + f(x2)
>f(ax) = af(x)
>などを、使うのかと思ったのですが、
>よくわかりません。

 良い線行っています。
 次のどちらか一方でも満足できないことを示せれば非線形であるということができます。

1) 与えられた微分方程式を満たす関数にy1とy2の2つがあったとします。このときy=y1+y2は微分方程式の解であると言えるか。

2) 与えられた微分方程式を満たす関数にy1があったとき、y=ay1(aは任意の実数)が微分方程式の解であると言えるか。

 与えられた微分方程式では、このどちらもいうことができませんので「非線形」ということになります。

Q線形・非線形って何ですか?

既に同じようなテーマで質問が出ておりますが、
再度お聞きしたく質問します。

※既に出ている質問
『質問:線形、非線型ってどういう意味ですか?』
http://oshiete1.goo.ne.jp/kotaeru.php3?q=285400
結局これを読んでもいまいちピンと来なかった...(--;


1.線形と非線形について教えてください。
2.何の為にそのような考え方(分け方)をするのか教えてください。


勝手なお願いですが、以下の点に留意いただけると大変うれしいです。
何せ数学はそんなに得意ではない人間+歳なので...(~~;

・わかりやすく教えてください。(小学生に説明するつもりぐらいだとありがたいです)
・例をあげてください。(こちらも小学生でもわかるような例をいただけると助かります)
・数式はなるべく少なくしてください。

『そんな条件じゃ説明できないよー』という方もいると思いますが、どうぞよろしくお願いいたしますm(__)m

Aベストアンサー

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=A(一定)

という規則が成り立つからです。

xやyの例としては昨日の例で言う例1だとxがガムの個数、yが全体の金額、例2だとxが時間、yが走った距離です。

この規則が何で役に立つかというと、式をちょっと変形すると、

(yの増加量)=A×(xの増加量)・・(1)

ということがわかります。つまり、Aの値さえわかれば、xが増えたときのyの値が容易に推測できるようになるわけです。


ここで「Aの値さえわかれば」と書いていますが、この意味を今から説明します。

自然界の法則を調べるためには何らかの実験を行います。例えば、りんごが木から落ちる運動の測定を行います。
ここから質問者様がイメージできるかわかりませんが、りんごは時間が経つにつれて(下に落ちるにつれて)落下するスピードが速くなるんです。今、実験として、1秒ごとにりんごのスピードを測定したとします。そしてその結果をグラフにプロットしていくと、直線になることがわかります。(ここがわかりにくいかもしれませんが、実際に実験を行うとそのようになるのです)

数学の問題のように初めから「時速100kmで走る」とか「1個100円のガム」とかいうことが与えられていれば直線になることはすぐにわかります。
しかし、自然界の法則はそうもうまくいきません。つまり、実験を行ってその結果をプロットした結果が直線状になっていたときに初めて「何らかの法則があるのではないか」ということがわかり、上で書いた「Aの値さえわかれば」の「A」の値がプロットが直線状になった結果、初めてわかるのです。

そして、プロットが直線状になっているということは、永遠にそうなることが予想されます。つまり、今現在はりんごが木から落ちたときしか実験できませんが、その結果を用いて、もしりんごが雲の上から落としたときに地面ではどのくらいのスピードになるかが推測できるようになるわけです。ここで、このことがなぜ推測できるようになるかというと、(1)で書いた関係式があるからです。このように「なんらかの法則があることが推測でき、それを用いて別の事象が予言できるようになる」ことが「線形」が重要だと考えられる理由です。

しかし、実際に飛行機に乗って雲の上からりんごを落としたらここで推測した値にはならないのです。スカイダイビングを想像するとわかると思いますが、最初はどんどんスピードが上がっていきますが、ある程度でスピードは変わらなくなります。(ずっとスピードが増え続けたら、たぶんあんなに空中で動く余裕はないでしょうか??)つまり、「線形から外れる」のです。

では、なぜスピードが変わらなくなるかというと、お分かりになると思いますが、空気抵抗があるからなんですね。(これが昨日「世の中そううまくはいかない」と書いた理由です)つまり、初めは「線形」かと思われたりんごを落とすという実験は実際には「非線形」なんです。非線形のときは(1)の関係式が成り立たないので、線形のときほど容易には現象の予測ができないことがわかると思います。


では、非線形だと、全てのことにおいて現象の予測が難しいのでしょうか?実はそうでもありません。例えば、logは非線形だということをNo.5さんが書かれていますが、「片対数グラフ」というちょっと特殊な形のグラフを用いるとlogや指数関数のグラフも直線になるんです。つまり、普通のグラフでプロットしたときに「非線形」になるため一見何の法則もないように見えがちな実験結果が「片対数グラフ」を用いると、プロット結果が「線形」になってlogや指数関数の性質を持つことが容易にわかり、それを用いて現象の予測を行うことが(もちろん単なる線形よりは難しいですが)できるようになるわけです。


これが私の「線形」「非線形」の理解です。つまり、

1) 線形の結果の場合は同様の他の事象の推測が容易
2) 非線形の場合は同様の他の事象の推測が困難
3) しかし、一見非線形に見えるものも特殊な見方をすると線形になることがあり、その場合は事象の推測が容易である

このことからいろいろな実験結果は「なるべく線形にならないか」ということを目標に頑張ります。しかし、実際には先ほどの空気抵抗の例のように、どうしても線形にはならない事象の方が世の中多いんです。(つまり、非線形のものが多いんです)

わかりやすいかどうかよくわかりませんが、これが「線形」「非線形」を分ける理由だと思っています。

やっぱり、「線形の方がなんとなくわかりやすい」くらいの理解の方がよかったですかね(^^;;

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=...続きを読む

Q微分方程式 線形 非線形

前回の質問の続きです。
前回の質問内容:http://oshiete.goo.ne.jp/qa/7818206.html

ラプラス方程式が、2階線形偏微分方程式、
ポアソン方程式が、2階非線形偏微分方程式であることは
理解できました。ありがとうございます。

微分方程式で参考書やインターネットにあった線形微分方程式と
非線形微分方程式を以下に示します。

線形微分方程式
(1)y”+y’-2x=0
(2)y’+xy=1
(3)(x-1)y''-xy'+y=0

非線形微分方程式
(1)(y”)^2+y’-2x=0
(2)x(y”’)^3+y’=3
(3)y・y’+xy=1

上記、線形/非線形の分類に間違いはあるでしょうか?

非線形微分方程式の(3)y・y’+xy=1は、なぜ非線形となるのでしょうか?
y・y’+xy=1⇒y’+x=1/y⇒y’+x-1/y=0は線形ではないでしょうか?

線形微分方程式(2)y’+xy=1も、xy’+xy=1となると非線形になるの
でしょうか?

ご回答よろしくお願い致します。

Aベストアンサー

←A No.3 補足

> 多項式においてxとyを共に変数とすると、
> xyもyyもどちらも2次ですよね?
A No.3 を、ほとんど読んでないようですね?

xy も yy も { x,y } については 2 次です。
しかし、y についての微分方程式の次数を数えるときは、
{ y,y',y'',y''',… } についての次数を見るのです。

x は、{ y,y',y'',y''',… } に含まれていません。
yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、
xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。

(u-1)(v^2+v+1)w が、{ u,v } について 3 次であることも解りますか?


また、
> yy’とxy’におけるxとyはどちらも微分していないので、
のようなことが気になってしまうなら、

yy’+xy=1 は、AB+xA-1=0 の A,B に { y,y',y'',y''',… } の
どれかを代入したもの。AB+xA-1 は { A,B } について何次式か?
と考えてみるとよいと思います。

微分方程式を、多変数多項式=0 の多変数に y または y の高次導関数を
代入したものと見たときに、左辺の多項式の次数が微分方程式の次数。
それが 1 次なら、線型。更に定数項が 0 なら、同次 1 次です。

←A No.3 補足

> 多項式においてxとyを共に変数とすると、
> xyもyyもどちらも2次ですよね?
A No.3 を、ほとんど読んでないようですね?

xy も yy も { x,y } については 2 次です。
しかし、y についての微分方程式の次数を数えるときは、
{ y,y',y'',y''',… } についての次数を見るのです。

x は、{ y,y',y'',y''',… } に含まれていません。
yy' は、y と y' が 1 次づつの積で { y,y',y'',y''',… } については 2 次、
xy' は、{ y,y',y'',y''',… } に含まれるのが y だけで 1 次です。

(u-1)(v^2+v+1)w ...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q斉次とは?(漢字と意味)

"斉次"という漢字表記と意味の対応についてお尋ねしたいです。

次数が斉しい、と訓読できると思うのですが、
ここでいう次数とは何の次数なのでしょうか?

Aベストアンサー

 ご存じの通り、「斉次」=「次数が斉(ひと)しい」 でよろしいと思います(英語では、homogenous)。また、別の言い方としては「同次」ともいいます。

 さて、お尋ねの次数についてですが、例えば、xとyの多項式の場合は、xとyを同じものとして扱って、同じ次数(xとyを掛けた回数)だけで表されるものを「斉次」といいます。

 例)○ x^3+x^2・y+x・y^2+y^3   (x、yについての3次の斉次多項式)
   × x^3+x^2・y+x・y^2+y^3+5 (定数項の5は次数0で異なる次数のものが含まれているので。)

http://ja.wikipedia.org/wiki/%E5%A4%9A%E9%A0%85%E5%BC%8F#.E6.96.89.E6.AC.A1.E5.A4.9A.E9.A0.85.E5.BC.8F


 また、微分方程式などで使われる場合は、y、y'、y''、y'''などを同等に扱って、同じ次数(y、y'、y''、y'''などを掛けた回数)だけで表されるものを斉次微分方程式といいます。

 例)○ y''+y'+y=0    (次数は1)
   ○ y''y'+y''y+y'y=0 (次数は2)
   × y''+y'^2+y=0   (1次と2次が混在)
   × y''+y'+y=5    (0次と1次が混在)
   × y''+y'+y=x    (0次と1次が混在)

http://ja.wikipedia.org/wiki/%E7%B7%9A%E5%9E%8B%E5%BE%AE%E5%88%86%E6%96%B9%E7%A8%8B%E5%BC%8F#.E5.AE.9A.E6.95.B0.E4.BF.82.E6.95.B0.E3.81.AE.E6.96.89.E6.AC.A1.E5.B8.B8.E5.BE.AE.E5.88.86.E6.96.B9.E7.A8.8B.E5.BC.8F.E3.81.AE.E8.A7.A3.E6.B3.95

 ご存じの通り、「斉次」=「次数が斉(ひと)しい」 でよろしいと思います(英語では、homogenous)。また、別の言い方としては「同次」ともいいます。

 さて、お尋ねの次数についてですが、例えば、xとyの多項式の場合は、xとyを同じものとして扱って、同じ次数(xとyを掛けた回数)だけで表されるものを「斉次」といいます。

 例)○ x^3+x^2・y+x・y^2+y^3   (x、yについての3次の斉次多項式)
   × x^3+x^2・y+x・y^2+y^3+5 (定数項の5は次数0で異なる次数のものが含まれ...続きを読む

Q線形2階微分方程式と非線形2階微分方程式の違いは?

数学用語の意味の違いがいまいちつかめません。

(1)【線形2階微分方程式】
未知数y(x)とその導関数y'(x),y''(x)についての線形の微分方程式
   y''+p(x)y'+q(x)y=f(x)
を 2階線形微分方程式という.最も簡単な例として
d^2f(x)/dx^2=0
がある。

(2)【非線形2階微分方程式】
非線形2階微分方程式の定義がテキストには載っていなかったのですが、
   y''+p(x)y'+q(x)y ノットイコール f(x)
が非線形2階微分方程式ということでしょうか?

(1)と(2)の違いがどこにあるのか、はっきりせずにモヤモヤしているので、
スッキリさせたいです。どなたか数学に詳しい方がいらっしゃれば、
どうかご教授下さい。よろしくお願いします。

Aベストアンサー

線形微分方程式は、y''+p(x)y'+q(x)y=f(x)
など、微分演算子を、D=Dxx+p(x)Dx+q(x)のように
ひとつにまとめて、
Dy=f(x)
のように書けるものです。
ここに、Dxxはxで2回微分、Dxはxで1回微分することを意味する。
関数全体の空間をベクトル空間と見て、
Dは関数空間の間の線形写像になっているから線形微分方程式
といいます。
一方、y''y+y'=f(x)のようなものは、Dy=f(x)の形に書けないので、
線形微分方程式とは言いません。
要するに、y,y',y'',…の線形結合=f(x)のタイプが線形微分方程式
で、そうでないものが、非線形微分方程式です。

Q非線形微分方程式の問題です

非線形微分方程式について質問です。
とある大学院試験の数学の問題で次のような問題がありました。
y = dy/dx (x) + 4(dy/dx)^2
この微分方程式は (dy/dx)^2 の項があり、非線形微分方式です。
非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。

私はこの問を解けませんでした。
解くことは可能なのでしょうか。
お願いします。

Aベストアンサー

a^2y=ax+4
(補足)まじめに解くと
y'=pとおけば
y =4p^2 + xp
xで微分すると
p=8pp'+p+xp'
p'=0 →p=a(定数)
または、
p=-x/8
p=aのとき
y =4a^2 +ax
y=C(x+2C)

p=-x/8のとき
y= -x^2/16(これが抜けてた。こっちが特殊解?)

>非線形微分方程式では dy/dx をこのように y や x とは一見独立したようなものとして扱うのが定石なんでしょうか。

というより
1階高次常微分方程式の解法手順で解くと
p'=0 →p=a(定数)
が出てくるから。
p'=0 →p=a(定数)
が出てこない一般の場合は、意味がない
(定石)
y=f(p、x)
と解けるときは、両辺をxで微分して(pの微分方程式にして)
pを求めて、y=f(p、x)に代入する。
x=f(p、y)のときはyで微分する(1/pとすれば上とおなじ)
などなど
>非線形微分方程式は解を求めるのが大変難しいだけでなく、解が求められないものもたくさん存在します。
というのはあくまで一般論。とくに大学院試験の数学の問題では
名前のついた(解くことができる)有名な”非線形の”方程式が出る。
(とおもう)

a^2y=ax+4
(補足)まじめに解くと
y'=pとおけば
y =4p^2 + xp
xで微分すると
p=8pp'+p+xp'
p'=0 →p=a(定数)
または、
p=-x/8
p=aのとき
y =4a^2 +ax
y=C(x+2C)

p=-x/8のとき
y= -x^2/16(これが抜けてた。こっちが特殊解?)

>非線形微分方程式では dy/dx をこのように y や x とは一見独立したようなものとして扱うのが定石なんでしょうか。

というより
1階高次常微分方程式の解法手順で解くと
p'=0 →p=a(定数)
が出てくるから。
p'=0 →p=a(定数)
が出てこない一般の場合は、意味...続きを読む

Q線形微分方程式とは…

今理系大学の一年生をやっています!
そこで、物理んぼ授業で習ったのですが、数学っぽいのでこちらに投稿したのですが…
私は、線形微分方程式とか非線形微分方程式とかの意味が全くわからないんです。
まず、何を求めるのかがわからない。
そして一般解と特解の意味がわからないし、どうして一緒にでてくるのかがわからない。
などなど、初歩の初歩でとまどってます。
なので、もしやさしく書いてあるサイトや回答者様がいたら教えてほしいです。
ここでも同じような質問がないか探しましたが、書いてある事の意味がよくわかりませんでした。
早く今の状況(わからないという状況)から脱出したいので、わかる方、お願いします。

Aベストアンサー

第1回から順に見てみてください

参考URL:http://www.ss.u-tokai.ac.jp/~ooya/Jugyou/4KHouteishiki/

Q振り子の慣性モーメントの求め方

鉄の棒の先に立方体の重りを付けた、振り子の慣性モーメントを求めたいのですが、振り子全体の慣性モーメントの求め方と、鉄の棒と重りのそれぞれの慣性モーメントの求め方を教えてください。よろしくお願いします。

鉄の棒(長さL=275mm、質量m1=42.2g)と立方体(一辺の長さa=30mm、質量m2=226.2g)は以上のようになっています。
できれば詳しく教えていただけたら幸いです。よろしくお願いします。

Aベストアンサー

慣性モーメントは、
回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E3%83%A2%E3%83%BC%E3%83%A1%E3%83%B3%E3%83%88
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性モーメントだと思うので、積分によって求めた、鉄の棒と立方体の重心周りの慣性モーメントを用いて、運動エネルギーを出します。

平面上の振り子運動だと思うので、
角度をθ、重心までの距離をr1,r2などと置いて、それぞれの重心のx座標、y座標をr、θで表します。
速度v1,v2を微分によって求めます。

ここで、運動エネルギーは、並進の運動エネルギーと回転の運動エネルギーの和なので、
E = 1/2 mv^2 + 1/2 Iω^2 (*)
の形であらわされます。

これを用いて、振り子の運動エネルギーを出して、この運動エネルギーを
E=1/2 Iω^2の回転のみのエネルギーとした時の、Iにあたる量が振り子の慣性モーメントです。
(振り子の回転中心は動かないので上記の形にかけます)
(鉄の棒と立方体は重心中心の慣性モーメントなので、重心が動くので(*)の形でかけます)

慣性モーメントは、
回転中心をどこに取るかによって異なります。

定義は
http://ja.wikipedia.org/wiki/%E6%85%A3%E6%80%A7%E3%83%A2%E3%83%BC%E3%83%A1%E3%83%B3%E3%83%88
を見てください。

おそらくは重心周りの慣性モーメントだと思うので、
鉄の棒では密度を線密度に置き換えて積分してください。
鉄の棒
I=∫[-L/2→L/2] m1/L * r^2 dr
立方体
I=∫∫∫[x:-a/2→a/2 y:-a/2→a/2 z:-a/2→a/2] m2/a^3*√(x^2+y^2+z^2) dxdydz
を計算します。

振り子全体の慣性モーメントは、回転中心からの慣性...続きを読む

Qモードとはなんですか?

 解析ソフトを使って固体の固有値解析(固有振動数解析)を行うとモードという言葉が出てきます。モードとはなんですか?モード形状によって固有振動数が変化するのはどうしてでしょうか?
「モード形状1で200Hzの固有振動数が検出された」という結果であったら、どのような条件下で200Hzの振動が得られたということなのでしょうか?
 モード形状1ならば固有振動数は手計算の結果(片面支持で材料の長さ、密度、ポアソン比、ヤング率を公式に代入)と近似するのですがモード形状が上がるに従って固有振動数が上がっていきます。

Aベストアンサー

物理、特に振動解析の世界で「モード」と言ったら、通常は振動の態様のことを指します。

両端を固定した弦の振動で考えてみます。

[両端を固定した弦」

○──────○

ご承知かと思いますが、もっとも低い次数の振動(基本波)は以下のような振動形態を示します。

[基本波]
   __
  /  \ 
○/    \○

より高い次数の振動の振動の態様は以下のようになります。

[第二次高調波](2倍振動)
  _ 
○/ \   ○
    \ /
      ̄

[第三次高調波](3倍振動)
  
○/\  /\○
   \/

このような振動態様のことを「モード」といい、「振動モードが異なる」などと言います。

さらに剛体棒であれば弦と異なり、横振動、ねじり振動、縦振動などの異なる種類の振動が現れます。それぞれどんな変形をするかは参考ページ[1]を見てください。これらの変形の違いのことも「モード」と呼び、例えば「横振動モードの1次の固有振動数は○○Hz」などと言います。

isaccさんがどのようなソフトを使っておいでなのかどのような計算をなさっているか分からないので「モード1」がどんなものであるかは断言できないのですが、「横振動、ねじり振動、縦振動」などの違いを指している可能性も考えられます。横振動、ねじり振動、縦振動ではそれぞれ解くべき方程式が異なる(本質的には2次の微分方程式に帰着するのですが、代入する物理量が異なる)ので、固有振動数も当然ながら異なったものになります。
また「モード形状が上がるにつれて」が、振動の次数が上がる意味であれば当然ながら固有振動数も上がります。

[1] http://exile.itc.pref.tokushima.jp/report/femop/mode-post2/default.htm

参考URL:http://exile.itc.pref.tokushima.jp/report/femop/mode-post2/default.htm

物理、特に振動解析の世界で「モード」と言ったら、通常は振動の態様のことを指します。

両端を固定した弦の振動で考えてみます。

[両端を固定した弦」

○──────○

ご承知かと思いますが、もっとも低い次数の振動(基本波)は以下のような振動形態を示します。

[基本波]
   __
  /  \ 
○/    \○

より高い次数の振動の振動の態様は以下のようになります。

[第二次高調波](2倍振動)
  _ 
○/ \   ○
    \ /
      ̄

[第三次高調波](3倍振動)
 ...続きを読む


人気Q&Aランキング