プロが教えるわが家の防犯対策術!

複素数は何かの設計などの計算に役立つのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (7件)

iは虚数単位とします。



a-b=
a+(-b)=
a+(b*i*i)

小1で習う引き算も、実は複素数を使った計算の特別な場合と考えることができます。(虚数単位が表面に現れてこないのです)
    • good
    • 7

先の方が書いていらっしゃる通り、回転の計算を数同士の掛け算で簡単にやってしまえるので、ゲームや動画で複素数を発展させた四元数・クォータニオンというのを使っています。


最近はキャラクターやアイテムが3Dで複雑な動きをするようになってますよね。
昔は行列式を始めややこしい式をいじって時間をかけて計算していたのが、これのおかげで早く簡単に済むようになりました。
    • good
    • 4

複素数を使うと、回転という操作を掛け算だけで簡潔に表せる。

なので、回転が絡むような課題になら大抵応用されています。また、回転運動を時間に沿って見ると、これは波動である。で、波動を扱う課題には複素数が不可欠です。特に、光と電子の基礎理論(電磁量子力学)は、複素数で書かれています。
てなわけで、機械工学、電気工学、電子工学、光学、材料学、薬学、その他いろいろな技術の計算に使われる。製品がモロに複素数を扱っているようなものとしては、JPEG画像圧縮だとか、MRI装置だとか…
    • good
    • 9

私は一時期、機械系の技術者として、朝から晩まで座標計算をやっていました。

それは、まさに、山ほどある解析幾何学の問題を解く作業でした。そのとき、複素数のおかげで、とても助かりました。これは、複素数の利用のごく一端です。
    • good
    • 3

実生活でみかけるのは Fourier 変換くらいですかね。

    • good
    • 3

以下のURLの6.他分野における応用が参考になるかと思います。



http://ja.wikipedia.org/wiki/%E8%A4%87%E7%B4%A0% …

私たちも、実はいろいろと恩恵を受けているんですよ。
    • good
    • 1

 一番よく知られているのが電磁気学でコイルの交流抵抗(インピーダンス)を計算するのに使用します。

スピーカーの裏とかに『8Ω』なんて書かれているアレですね。
    • good
    • 6

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q虚数の用途

虚数を今習っているんですが
私たちの普通の生活の
どういうところで生かされているんでしょうか
文章題みたいな問題もないし
先生に聞いてみてもあんまりしらないみたいなので・・・

Aベストアンサー

虚数というのは16世紀くらいに
3次方程式の解を表現するために
作られた記号でした。

 2回かけるとー1になるという
性質の数があると仮定(想像imaginary)しないと、
3次方程式の答えが出せない場合
があるんです。
 最初は現実とはつながりのない、単なる
想像上の数、記号だったわけです。

 えーと、三角関数はもうやってますよね。
2回かけると-1になるという性質が
三角関数にもありますね。
COS90°は2回かけると-1になります。

 オイラーの式というのを理解できると
納得できるのですが、実は虚数というのは
2次元平面上の回転を表現する性質が
あるということが19世紀に明らかに
なったんです。
 発端は、ガウスという数学者が
考え出した複素数平面(またはガウス平面)
というもので、虚数が幾何学的意味(方向を
表すベクトルや空間上の回転)を持つこと
が分かったんです。
 複素数は虚数と実数の足し算の形をした
もので、後からやると思います。

 三角関数のカーブを見ると分かると思いますが、
回転を表す関数は、正弦波という波を表現
することができます。
 家庭用の100Vの交流電圧も正弦波です。

 三角関数も虚数も、電気信号の交流のように、
周期的に回転、変動する現象を表現する
のに非常に有効的なんです。

 2,3年の物理の教科書に出てくる話ですが、
コイルやコンデンサに加わる電圧と
電流は移相が90°ずれているんです。
電圧が最大値になってから、1/4周期、
つまり90°移相がずれて、電流が
最大値になるんです。

 こういった現象を表現するのに
虚数は重要です。

>どういうところで生かされているんでしょうか

 身の回りの電気製品の、電気回路の設計などに
生かされています。

 電気回路という名前のついた本を
探して開いてみると、虚数が沢山
出てきます。

虚数というのは16世紀くらいに
3次方程式の解を表現するために
作られた記号でした。

 2回かけるとー1になるという
性質の数があると仮定(想像imaginary)しないと、
3次方程式の答えが出せない場合
があるんです。
 最初は現実とはつながりのない、単なる
想像上の数、記号だったわけです。

 えーと、三角関数はもうやってますよね。
2回かけると-1になるという性質が
三角関数にもありますね。
COS90°は2回かけると-1になります。

 オイラーの式というのを理解できると
納...続きを読む

Q数学の現実問題への応用例を知りたいのですが…

数学の現実問題への応用の例(数理モデル・数学モデルの例って言うんでしょうか?)について知りたいのですが、どんなものがありますか??CDなどの録音・再生やコンピューターなどはその例のひとつだとは思うんですが。
インターネット上で「数理モデル シュミレーション」と入れて検索してみましたが、難しいものが多くてよくわかりませんでした…。特に、数1、2、A、Bの範囲での応用例を教えていただけるとうれしいです。
お願いします。

Aベストアンサー

「数理モデル」とは,ある現象を数学を使って表現したものなので,
ご質問の御意図とは外れると思いますので,ここでは「数学」解釈して回答致します.

因みに,数理モデルの例.
・高速道路の渋滞状況は,弾性波としてモデル化することがある.
・パイロットがあっ!と思って非常回避行動を起こすときの反応の遅れを,
 制御工学では「1次遅れ」として扱うことがある.
・ある外回りの営業マンが効率良く取引先を回る問題は「巡回セールスマン問題」としてモデル化される.
などなど.

複素数は,電気のみならず,力学でも多用します.
車のサスペンションなどの振動現象(バネ・ダンパ系等)は,複素数を導入するととても解きやすくなります.
(単振動は円運動の実部のみが見えていると解釈するような感じ.)
また,制御(古典制御)にも使います.実部が0に集束するとき,
簡単に言えば,安定な制御が可能,とか.
流体力学でも複素平面上で流れを表現します.
このように複素数は,導入するととても計算が楽になる魔法のような数学です.

行列も方程式をえいやと解いたり,連立微分方程式の性質を探るときにも
強力な武器になります.
この連立微分方程式で表現される制御装置を使って機械は本当に上手く
制御できるのか?と言うとき,微分積分や行列の性質を駆使して判断します.
安定解析,現代制御,など.

意外なところでは,ベクトルの内積を高校で習いますが,
あれは実は「実ヒルベルト空間」の定義であり,大変重要です.
普通我々が使う「距離」もそうです.
空間論は,制御工学などの重要な工学では非常に重要な概念です.

まぁ一言で言ってしまえば,高校で習う数学や物理ほど,
工学の分野で使いまくるものはありません.基礎ですものね.
ロケットを飛ばす,人工衛星を組み立てる,軌道上で制御する,などなどやってますが,
高校の教科書やチャート式は常に傍らにおいてあります.
しかし幾何学なんてあまり使わないかなぁと思っていたのですが,
でも力学を図形的に解いたりするときには結構使うことになります.

高校で習うことは全て,理系で生きて行くならば,人生の中で最低1回は使うと思います.

「数理モデル」とは,ある現象を数学を使って表現したものなので,
ご質問の御意図とは外れると思いますので,ここでは「数学」解釈して回答致します.

因みに,数理モデルの例.
・高速道路の渋滞状況は,弾性波としてモデル化することがある.
・パイロットがあっ!と思って非常回避行動を起こすときの反応の遅れを,
 制御工学では「1次遅れ」として扱うことがある.
・ある外回りの営業マンが効率良く取引先を回る問題は「巡回セールスマン問題」としてモデル化される.
などなど.

複素数は,...続きを読む

Q虚数とは結局なんですか?

以前から疑問なのですが、虚数とは何なのでしょうか?
iであらわされ、二乗すると-1になるなどの事はわかるのですが、想像も付かない世界なので、実感がわきません。
理論上の物であることもわかりますが、もう少し、細かく知りたいのです。
曖昧な質問で申し訳ないのですが、虚数とは何か、教えて頂けると幸いです。

Aベストアンサー

虚数の良い名称が見つかりました

実数を導入するとき
「無理数」が追加されました

複素数を導入するとき
「無実数」を追加することにすべきだったのです

命名を「虚数」でなく「無実数」ということにすればあなたの混乱は回避されたのかもしれません

「虚数」(さらに「無理」)よりも「無実」の方が良いイメージがあるからです

Q複素解析について

僕は大学4回生で、複素解析を勉強しているものです。来年からは、大学院に進学が決まっています。
そこで、僕は先生の薦めもあり多変数複素解析を勉強しようと考えています。
そこで、疑問に思ったことがあります。
(1)複素解析とはどのような分野で役に立つのでしょうか?
(2)複素解析は若干古い(時代遅れ)といったようなことを聞いたことがあります。そのへんはどうなんでしょうか?
(3)そもそも複素解析とは何をするもの(目的)なのでしょうか?
とても曖昧な質問なのですが、お願いします。

Aベストアンサー

最近では多変数関数論と函数解析学を応用して解析関数空間に関する研究がなされています。
この分野での研究は国内の数学者というよりはアメリカ・ヨーロッパ系の数学者に多いようです。
また、韓国では函数論(Function Theory)というと日本で言われる函数論ではなく、解析関数空間論を意味しているのではと考えさせられます。
最近の興味深いTextとしてはK.Zhuの著書、Spaces of Holomorphic Functions in the Unit Ballがあります。
国内で多変数関数論というと複素力学系あるいは幾何関連の研究が盛んに行われているでしょうか。微分方程式においても多変数解析関数を利用した話題があるようです。
大学院に進学なさるということでしたら、多変数関数論の萌芽的研究という研究集会に参加してみてはどうでしょうか?きっと役に立つのではと思います。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qいい数学の先生ってどんな教え方をする先生でしょうか?

こんばんは。

いい数学の先生ってどんな教え方をする先生だと思いますか?

抽象的な質問ですみません。
例えば、
・公式はたくさん覚えるべきだ、と主張する先生
・とにかく問題はたくさんとくべきだという方針の先生
のような感じで答えていただけるとうれしいです。

Aベストアンサー

『良い選手は良い監督になれない』では無いかなぁと思います。
中には王監督のように良い選手でありよい監督である事もありますよ。
ではその差は何か?と考える…

理論的な頭からすれば数学の目標はいち早く答えにたどり着く事かと思うんです。
そうなると途中の計算式や考え方ではなく、『こう言う問題はこう考えてこう答える』
これがマニュアル化してしまう可能性があるんですね。
ですから『わけ解らないまま答える』という事が大いにありうるんです…

確かに、実際の数学の試験では問題解決の方針を考えている余裕が無い事が多いです。
ですが、どう考えるのかどういうものかを、しっかり教える先生が良い先生かと思うんです。

私は数学が大好きで理系大学に入り、朝な夕な家庭教師をしていました。
私が良い教師であるかは、生徒にきかなければわからないでしょう。
ですが少なくとも、中学高校時代の数学教諭と比較して『解りやすい』とは言わていましたね。

何のためらいも無く公式を言う、『ここまで教えなさい』という事が頭から離れない教師と
自由奔放に以下に数学って面白いんだよを主張する私では比べてはいけないのでしょうけれど…
例えば2次関数
私は家庭教師時代とにかくグラフを書かせる事に徹しました。
展開や因数分解などしない、とにかく式からグラフを書かせるんです…
公式はその後でした。
式の変形は公式は必要ないんですね。きちんとどういうものかを見せる事により
計算結果が雰囲気で正誤判定ができるようになりました。
パズルのようなものです。算数は平気なのに数学になったと慌てるから駄目
算数と同じようにじっくり解るように教えれば、後は生徒に任せていても実に速く解けるようになるんですね。
待て!と言ってもどんどん次から次へ進んでしまう…
『良い点数を取らせる事』よりも『数学は楽しい』と言ってもらえる事を目指すのが良い先生かなぁなんて我ながら思いました…

と言いつつも、いまだに忘れない言葉があります。
『紫蘭先生のおかげで点数がが25倍になった!』
普段出来てもせいぜい一問、4点だった生徒が100点満点を取ったんだな…
あの時は驚いて次の瞬間、自分の事のように泣いてしまった…

もし宝くじで3億円当たったら家を建てて、その一室でもう一度、家庭教師をしたいなぁなんて思う紫蘭でした…
箇条書きになっていませんでしたね失礼しました…

・数学のイメージをきちんとつけてくれる先生
・数学は実は楽しいという事を気づかせる先生
と言う所でしょうか…

『良い選手は良い監督になれない』では無いかなぁと思います。
中には王監督のように良い選手でありよい監督である事もありますよ。
ではその差は何か?と考える…

理論的な頭からすれば数学の目標はいち早く答えにたどり着く事かと思うんです。
そうなると途中の計算式や考え方ではなく、『こう言う問題はこう考えてこう答える』
これがマニュアル化してしまう可能性があるんですね。
ですから『わけ解らないまま答える』という事が大いにありうるんです…

確かに、実際の数学の試験では問題解決の方針...続きを読む

Qdxやdyの本当の意味は?

宜しくお願いします。

昔、高校で
dy/dyの記号を習いました。これは分数ではなくて一塊の記号なのだと習いました。
が、微分方程式ではdyとdxをばらばらにして解を求めたりします。
「両辺をdy倍して…」等々、、、
また、積分の置換積分では約分したりもしますよね。

結局、dy/dxは一塊ではないんですか??やはり分数なのですか?
(何だか高校の数学では騙されてたような気がしてきました)
一塊の記号でないのなら分数っぽい記号ではなくもっと気の利いた記号にすればいい
のにとも思ったりします。

実際の所、
dxの定義は何なんですか?
dyの定義は何なのですか?
本当はdxとdyはばらばらにできるのですか?

どなたかご教示いただけましたら幸いでございます。

Aベストアンサー

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、普通のまっすぐなユークリッドの座標xを基準に取ることがほとんどです。そういうわけで、微分形式(特に1次の微分形式)はdxを基準に取ることが普通です。もちろんdyも1次の微分形式と呼ばれます。なにやら難しそうだけれども、dxや、dyといったものは、座標関数の全微分を表すものなんだ、ということで、単独で定義できるものだということは理解しておいて欲しいと思います。

さて、ふたつの座標x、yには通常ある種の関数関係があることがほとんどです。たとえばy=log xなど。これはグラフのイメージでいうと、普通のグラフを対数グラフにした、というイメージです。あるいは、中学高校でよくやっているのは(もちろん意識してませんが)、x軸かy軸を適当に尺度を変えてやるという変換、y=axというのもよくやります。さて、このときyの全微分をxの全微分で表せないか?ということを考えます。それが次の式です。大学では多変数バージョンを普通やります。

y=f(x)とyがxの関数でかけているとき、yの全微分d(y)はxの全微分d(x)を用いて、
d(y)=f'(x)d(x)
と表される。

これは微積分でやる置換積分の公式(チェイン・ルール)と呼ばれるものそのものです。代数的取り扱いに慣れているのならば、微分形式を抽象的な階数付交代代数と思うことができて、上で表されるチェイン・ルールが成り立つもの、と定義してもよいかと思います。いずれにせよ、微分形式の立場からいうと、d(x)やd(y)は単独に定義できる諸量です。

その意味では、dy/dxという記号は二つの意味に解釈できます。すなわちyというxの関数をxで微分した、という単なる記号だと思う方法(もちろんそれはy=f(x)であるときは、f'(x)を指すわけです)、ただし(d/dx)yと書くほうが望ましい。もうひとつは、微分形式dyとdxの変換則とみる(つまりdyとdxの比だと思う)という方法です。これはdy=f'(x)dxなのだから、dyはdxに比例定数f'(x)で比例している、と思うのだ、というわけです。分数の表記は形式的な意味しか持ちません。ですが、この両方の解釈をよくよく考えてみると、dy/dxは本当に分数のように扱うことが出来ることも意味しています。むしろそうできるように微分形式(dyとかdxとか)の記号を作ったと思うほうがよいでしょう。もう一度かくと、(d/dx)y=dy/dxなのだ、ということです。左が微分記号だと思う立場、右が微分形式の比だと思う立場。いずれも同じ関数f'(x)になっているのです。学習が進めば進むほど、この記号のすごさが理解できると思います。うまく出来すぎていると感嘆するほどです。

微分記号と思うという立場にたったとき、なぜd/dxと書くのか、あるいは積分記号になぜdxがつくのか、ということは高校レベルの数学では理解することはできません。もともとたとえばニュートンなんかが微分を考えたときは、d/dxなどという記号は使わず、単に点(ドット)を関数の上につけて微分を表していたりしました。そういう意味では、現在の微分記号のあり方というのは、単に微分するという記号を超えて、より深遠な意味を持っているとてもすごい記号なのだといえます。

なお蛇足ですが、1次の微分形式は、関数xの微小増加量(の1次近似)とみなすことができて、その意味で、無限小量という解釈も出来ます。物理などでよく使われる考え方です。またこれは大学3年レベルだと思いますが、微分形式を積分したりします。実はそれが高校でも現れる、∫(なんとかかんとか)dxというやつなのです。

数的に定義するというのが、いわゆる微分形式というもののことで、完全に代数的にこれらを定義することができます。ただ、定義しただけでは普通の微分とどう関係があるのか分かりにくく、その辺りは大学の2回生程度の数学になります。

dxというのは微分形式の立場からいうと、xという(座標)関数の全微分のこと、つまりd(x)のことです。dという記号はここでは全微分を表す記号だと思ってください。別の座標yを取ったとき、yの全微分をd(y)と書きます。現実には、座標といったときは曲がった座標を取るよりは、...続きを読む

Q面積を表す文字になぜSをつかうことが多いのか

タイトルどおりの質問です。職場で突然、話題になりました。現在、スクエアの頭文字では、という意見が優勢です。いろいろな説があるのかもしれませんが、「何々では」という予想ではなく、それなりに根拠がある由来をご存知の方、ぜひ教えてください。

Aベストアンサー

No4.の補足です。

歴史的な経緯からすると、繰り返しになりますが、和を表すsumあるいはsummationの頭文字をとったものというのが、数学界での定説です。

同様の見解は、次のURLにも出ています。
三重大学で作った解析学のホームページ内の掲示板での質疑です。
そのものズバリの質問と回答が載っています。
http://www.com.mie-u.ac.jp/~kanie/tosm/keiji04/k_result.htm

そもそも曲線図形の面積を求める方法には2つあります。
(たとえば、野崎昭弘他著「微分・積分の意味がわかる」ベレ出版,2000年,p114参照)

1つは原始的な方法で、既にアルキメデスの時代から知られている、
「図形を細かく分けて、直線で囲む形にして近似し、足し合わせる」という、いわゆる区分求積法です。

この足し合わせるという語は、英語などではsumとかsummationといいます。
そして、後述するライプニッツおよびニュートンによる微積分学以降、
離散量あるいは有限個のものの和を表すのに、この頭文字Sに対応するギリシャ語のアルファベットΣが使われ、
「一つ一つの分割をS1,S2,S3,・・・とおけば、全体の面積S=ΣSi」
という数学記法上の慣習として広まったものです。

つまり、Sを、sumあるいはsummationの頭文字であるとする根拠がここにあります。そして、今では、曲線図形でない場合でも広く一般的に、図形の面積を表すのにSは利用されています。もちろん、面積をSとおくというのは、規則でも強制でもありません。

さて、もう1つ、曲線図形の面積を求める現代的な方法は、積分を使う方法です。
これは、上記のS=ΣSiという表現式で、i=1,2,・・・という分割を無限に続けたときの極限値をもって、その図形の面積とするというものです。
その場合、極限値が存在するなら、各Siは、連続量S(x)に書き換えられて、S=∫S(x)dxと表現されます。
そして、この積分記号(インテグラル記号∫)は、ライプニッツの提案によるもので、
離散量の和の記号Σに対応して、連続量の和として、これまた和を意味するSを縦に伸ばした、イメージ的にも優れた記号と言えます。この事実は、
たとえば、ホームページでは
http://www.nikonet.or.jp/spring/integral/print3.htm
書籍では、
船山良三「身近な数学の歴史」東洋書店,1991,pp.308-313.
などでも述べられています。

ところで、面積がSで表されている場合、書き手によっては、ある「領域(sphere)」の面積を表すという意味で、sphereの頭文字Sを使ったということはあり得ることです。
しかし、残念ながら、squareやsurfaceの頭文字であるとするのは、特別の場合を除いて可能性は低いと考えられます。

一般に、数学の文献では、
「面積」には、通常areaを使います。また、四角形の面積には area of square を、円柱の側面積には surface atea of cylinder を使います。つまり、squareは四角、surfaceは曲面の意味です。
これらは、文献では、
William Dunham"The Mathematical Universe",Wiley,1994.
ホームページでは、
http://www.communicatejapan.gr.jp/yuki/algebra/wordsbook.htm
http://www.monjunet.ne.jp/PT/sampo/006.htm
などでも示されています。

以上、補足です。

No4.の補足です。

歴史的な経緯からすると、繰り返しになりますが、和を表すsumあるいはsummationの頭文字をとったものというのが、数学界での定説です。

同様の見解は、次のURLにも出ています。
三重大学で作った解析学のホームページ内の掲示板での質疑です。
そのものズバリの質問と回答が載っています。
http://www.com.mie-u.ac.jp/~kanie/tosm/keiji04/k_result.htm

そもそも曲線図形の面積を求める方法には2つあります。
(たとえば、野崎昭弘他著「微分・積分の意味がわかる」ベレ出版,2000年...続きを読む

Q「日常生活における数列」とはどういう意味でしょうか?

「日常生活における数列」とはどういう意味でしょうか?

質問を見てくださりありがとうございます。
質問内容は上記の事です。

課題の主題が「日常生活における数列」なのですが、どういう内容にすればいいかわからず困っています・・・。

・日常生活で数列で表現できるものを調べる。
・日常生活で数列で表現されているものを調べる。(バーコードなど)
・日常生活で数列を利用したものを調べる。(自然界とフィボナッチ数列の関係など)

上記の内、どれを目的(?)に調べたら良いのでしょうか・・・?


ただ補足に「いままでの学習の復習をかねている」とあるのですが、
習っていないような数列や計算をものを調べるのは、だめでしょうか?(乱数列など)
習ったのは、等差数列、等比数列、階差数列、漸化式です。


よろしくお願いします。

Aベストアンサー

>日常生活で数列で表現できるものを調べる

例1)誕生日から始めて毎日100円づつ貯金します。

誕生日からn日後(その日の貯金後)の貯金額a(n)は

a(n)=100n
漸化式表示では a(n)-a(n-1)=100, a(1)=100

例2)年利r%の複利で100万円預金した時、n年後の元利合計b(n)は
b(n)=1000,000(1+r/100)^(n-1)
漸化式表示では b(n)/b(n-1)=1+r/100, b(0)=1000,000

その他、今年の結果が来年の何かに影響する場合等、無数にあります。
 

Q偏角を表す「arg」の読み方

 どなたか教えて下さい!!

偏角を表す記号「arg」はなんて読めばいいのでしょうか?
 
 至急お願い致します。m(__)m

Aベストアンサー

とりあえずオンライン辞書として使ってみたらどうでしょう?

参考URL:http://www.alc.co.jp/sa_menu.html


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング