
No.1ベストアンサー
- 回答日時:
> Aが正則ならシュミットの直交化法で直交行列Qを作れますが、正則でないとAの正規直交基底がn個得られませんよね?
そこまでお分かりなら、あとは単純。
グラム-シュミットの直交化をやると、基底m個(m<n)が出た時点でAの全部の縦ベクトルが表せてしまう。だから、Rの上からm行以外は全部0ですね。ということは、Qの残りのn-m列が何であっても
A = Q R
を満たす。ですが、QR分解においてはQは直交行列でなくてはならないのだから、他のm行と直交する単位ベクトルn-m個を(好きな順番で)並べておけば良い。これで、正則でないAであってもQR分解できたことになりますね。
この回答へのお礼
お礼日時:2008/05/16 02:02
なるほど。ありがとうございます
直交する適当なベクトルを持ってくるのは考えましたが、そこで零ベクトルを考えたせいか見過ごしていました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
おすすめ情報