教えて!gooにおける不適切な投稿への対応について

お世話になります。

3次元座標2点からの直線式(ax+by+cz=0)の求め方を教えて下さい。

2次元座標であれば、1つの傾きから算出できるのですが、3次元座標になると、X-Y平面、Y-Z平面での傾きの使い方がこんがらかってしまいます。
基本的な質問で申し訳ありませんが、よろしくお願い致します。

座標1 = (x1,y1,z1)
座標2 = (x2,y2,z2)

以上

gooドクター

A 回答 (2件)

> 直線式(ax+by+cz=0)の求め方を教えて下さい。


3次元座標では(ax+by+cz=0)は原点を通る平面になり、直線の式ではありません。ax+by+cz=dは平面の一般式です。

2点を通る直線の式には公式があります。
以下のように簡単に導けます。
点(x1,y1,z1)を通り方向ベクトル(x2-x1,y2-y1,z2-z1)の直線ですから
媒介変数形式で
(x,y,z)=(x1,y1,z1)+t(x2-x1,y2-y1,z2-z1)
と成ります。
これを変形してすれば
(x-x1)/(x2-x1)=(y-y1)/(y2-y1)=(z-z1)/(z2-z1)
と3次元座標の直線の式となります。
    • good
    • 12
この回答へのお礼

ご回答頂き、ありがとうございました。
理解することができました。

お礼日時:2008/07/24 18:26

より一般的に答えると



(x,y,z,1)
(x1,y1,z1,1)
(x2,y2,z2,1)

という3x4行列の階数が2.
    • good
    • 5

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

gooドクター

このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング