あなたの映画力を試せる!POPLETA映画検定(無料) >>

大学1年の者です。
代数学で、行列式について習いました。
2次正方行列 (a,b,c,d)
について、原点→(a,c)→(b,d)の順で矢印を引いていくと、行列式が負のときは右回り、正のときは左回りになります。
具体例((a,c)=(3,2),(b,d)=(2,-1)のとき、行列式は負。よって右回り。)からこのようになることはわかるのですが、このようになることを説明すれと言われるとなると、まったくわかりません。
ちょっとしたことでも結構ですので、回答お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

>なぜ、-π/2回転するのでしょうか?



sin(π/2-θ)=cos(θ)の公式が直接みえるほうがわかりやすいかな、と思って、-π/2にしただけです。要は、ベクトルと直角であるようにすればよいので、π/2でも-π/2でもどっちでもよいのです。
    • good
    • 2
この回答へのお礼

またまた回答ありがとうございました。

お礼日時:2008/12/23 17:49

>gef00675さんの回答からすると、「右回り」が左手系で、「左回り」が右手系でしょうか?


「左手系」「右手系」とは何ですか?と聞かれるだけです。
自分で考えましょう。

この回答への補足

ずいぶんと日が経ってしまいましたが、わかりません。教科書等も見てみたのですが・・。

補足日時:2008/12/23 17:46
    • good
    • 1

平面の場合の行列式


|a b|
|c d|
の絶対値は、二つのベクトルの作る平行四辺形の面積を表しているということを習ったと思います。いま、(a,c)=x、(b,d)=yと表し、xとyのなす角をθとします。ただし、θはxからyに向かって測り、反時計方向を正としておきます。平行四辺形の面積は
S=|x||y|sinθ
です。ここで、(b,d)を-π/2回転したベクトルy’=(d,-b)を考えると、Sはxとy'の内積で表せます。
S=|x||y'|cos(90-θ)=ad-bc
と表せます。実際に図を書いて確かめてください。
 このとき、ad-bcの符号は、0<θ<πのとき正、π<θ<2πのとき負になっています。つまり、ベクトル(a,c)を反時計回りに回転して、ベクトル(b,d)に重ねるとき、回転角θがπより小さければ、行列式の値は正、πより大きければ負といえます。
 しかしながら、この符号は上記のような角度のとり方をしたからそうなったのであって、二つのベクトルを入れ替えると符号は逆になってしまいますね。
 行列式の符号の決め方は、単なる約束事であって、特別の理由があってそうなったわけではありません。プラスマイナスを逆にしても理論的な不都合はありません。ただ、符号の決め方を統一しておかなければ世の中が混乱するのでそう決められているだけです。
 同様に3×3の行列式の符号は、3つのベクトルがこの順に右手系をなすときプラス、左手系をなすときマイナスになるように決められています。
 さらに、n×nの行列式では、もはや人間の直観がおよばないので、逆に、行列式の符号が正になるような順序にならんでいるベクトルを右手系とよんだりします。
 以上のような説明で、ご質問の回答になったでしょうか。

この回答への補足

回答ありがとうございます。
>ここで、(b,d)を-π/2回転したベクトルy’=(d,-b)を考えると、Sはxとy'の内積で表せます。
S=|x||y'|cos(90-θ)=ad-bc
と表せます。

・・なぜ、-π/2回転するのでしょうか?

補足日時:2008/11/30 14:16
    • good
    • 1

>ちょっとしたことでも結構ですので、回答お願いします。


「右回り」と「左回り」を数学的に表現して補足にどうぞ。

この回答への補足

回答ありがとうございます。
gef00675さんの回答からすると、「右回り」が左手系で、「左回り」が右手系でしょうか?

補足日時:2008/11/26 17:09
    • good
    • 0

このQ&Aに関連する人気のQ&A

CoS 表」に関するQ&A: 力率の「進み」「遅れ」

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q行列の正定・半正定・負定

行列の正定・半正定・負定について自分なりに調べてみたのですが、
イマイチ良くわかりません。。。
どなたか上手く説明していただけないでしょうか?
過去の質問の回答に

>cを列ベクトル、Aを行列とする。
>(cの転置)Ac>0
>となればAは正定値といいます。
>Aの固有値が全て正であることとも同値です。

とあったのですが、このcの列ベクトルというのは
任意なのでしょうか?
また、半正定は固有値に+と-が交じっていて、
負定は固有値が-のみなのですか?

どなたかお願いしますorz

Aベストアンサー

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列ではないAの固有値がすべて正だからといって、
(cの転置)Ac>0とは限りません。
例えば、
A =
[ 1 4 ]
[ 0 1 ]
とすると、Aは対称行列ではなく、固有値は1です。
しかし、
(cの転置) = [ 1, -2]
とすると、
(cの転置)Ac = -3 < 0
となってしまいます。(実際に計算して確かめてください。)
なので、行列Aが対称行列であるという条件はとても重要です。

また、半正定値の定義は、上の定義で
『ゼロベクトルではない任意の』 --> 『任意の』
と書き直したものです。
このとき、半正定値行列の固有値はすべて0以上です。(つまり0も許します。)
逆に、対称行列の固有値がすべて0以上なら、その行列は半正定値です。

さらに、負定値の定義は、『ゼロではない任意の』ベクトルcに対して
(cの転置)Ac<0
となることです。
固有値についてはもうわかりますね。

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q行列式の符号が違う

次の行列式を計算せよ。
|a a^2 b+c|
|b b^2 c+a|
|c c^2 a+b|

…という問題を自分で解いてみました。

第3列 = 第3列+第1列

|a a^2 a+b+c|
|b b^2 a+b+c|
|c c^2 a+b+c|

(a+b+c)を括り出す

(a+b+c)*
|a a^2 1|
|b b^2 1|
|c c^2 1|

第1列と第2列を入れ替える(それに付随して-1が付く)

(-1)*(a+b+c)*
|a^2 a 1|
|b^2 b 1|
|c^2 c 1|

=(-1)*(a+b+c)*Π_[1≦i<j≦3]

=(-1)*(a+b+c)*(c-b)(c-a)(b-a)

=(-1)*(a+b+c)*(a-b)(b-c)(c-a)

…という結果になったのですが、本の答えを見ると
(a+b+c)*(a-b)(b-c)(c-a)
のように負符号が付いてないんです。
関数電卓でも確認しましたが、やはり負符号が付いていません。
どうか、どこで間違えたのか指摘してください。
お願いします。

次の行列式を計算せよ。
|a a^2 b+c|
|b b^2 c+a|
|c c^2 a+b|

…という問題を自分で解いてみました。

第3列 = 第3列+第1列

|a a^2 a+b+c|
|b b^2 a+b+c|
|c c^2 a+b+c|

(a+b+c)を括り出す

(a+b+c)*
|a a^2 1|
|b b^2 1|
|c c^2 1|

第1列と第2列を入れ替える(それに付随して-1が付く)

(-1)*(a+b+c)*
|a^2 a 1|
|b^2 b 1|
|c^2 c 1|

=(-1)*(a+b+c)*Π_[1≦i<j≦3]

=(-1)*(a+b+c)*(c-b)(c-a)(b-a)

=(-1)*(a+b+c)*(a-b)(b-c)(c-a)

…という結果になったのですが、本の答え...続きを読む

Aベストアンサー

OK、理解した。

|a^2 a 1|
|b^2 b 1|
|c^2 c 1|
これをヴァンデルモンドの行列式だと思い込んでいることが間違い。

ヴァンデルモンドの行列式は
|1    1    1  |
|x[1]  x[2]  x[3] |
|x[1]^2 x[2]^2 x[3]^2|
なので、
x[1] x[2] x[3]をa,b,cとすれば
|1 1 1|
|a b c|
|a^2 b^2 c^2|
これを転置(行列式の値は変わらない)すると
|1 a a^2|
|1 b b^2|
|1 c c^2|
となるので

C1とC3を入れ替えて
-1*
|a^2 a 1|
|b^2 b 1|
|c^2 c 1|

だ。

Q行列と行列式の違いは?

行列は高校でする勉強で、行列式は大学の線形代数で出てくる式だと思います。括弧の形が違います。
また行列は単なる数の配列、行列式は値を計算できると言う解釈らしいですがよくわかりません。詳しく教えていただけませんか?

Aベストアンサー

詳しくないけど。

>また行列は単なる数の配列
おおむねオッケー。

>行列式は値を計算できると言う解釈
こっちは違う。行列式は行列の「附属物」です。

行列式は高校でも出てくるはずですが、2x2行列で言えば、「行列」というのは実数が 2x2 = 4コ あつまった物です。

3x + 4y = 7
2x - 5y = 3

のように、たくさんの数を扱うよりも、3, 4, 2, -5 を「まとめて」行列 A とするとで、

Av = u

と「ひとつにする」と色々便利。要するに v = A^(-1)u という風に「逆数」をとれば良い。


行列式とは行列の性質を表わす、一種の「指標」です。最も最初に習うのが、逆行列の有無で
上記の連立方程式を Au = v という風に「ひとつにした」はいいけれども、A はただの数とは違うので、逆数がとれる条件が単純に A ≠ 0 ではなく、行列式を用いて det(A) ≠ 0 と表現されます。

det(A) は実数なので、行列に比べて格段に扱いやすく、しかも色々お徳。

詳しくないけど。

>また行列は単なる数の配列
おおむねオッケー。

>行列式は値を計算できると言う解釈
こっちは違う。行列式は行列の「附属物」です。

行列式は高校でも出てくるはずですが、2x2行列で言えば、「行列」というのは実数が 2x2 = 4コ あつまった物です。

3x + 4y = 7
2x - 5y = 3

のように、たくさんの数を扱うよりも、3, 4, 2, -5 を「まとめて」行列 A とするとで、

Av = u

と「ひとつにする」と色々便利。要するに v = A^(-1)u という風に「逆数」をとれば良い。


行...続きを読む

Q固有値と固有ベクトル・重解を解に持つ場合の解法

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくてこまってます。)

固有値λ1=λ2=-1より、求めるベクトルをx=t[x1,x2]とすると
A=
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
よって
2x1-x2 = 0
4x1-2x2 = 0
この二つは同一方程式より、x1 = 2x2
任意の定数αをもちいてx1 = αとすれば、
x = αt[1,2]

しかし、答えには、
x1 = αt[1,2]
x2 = βt[1,2] + αt[0,-1]

とありました。なぜなでしょう?
参考にしたページなんかを載せてくれるとありがたいです。

ちなみにこんな問題もありました。
A=
|0 0 1|
|0 1 0|
|-1 3 2|

これは固有値がすべて1になる場合です。
これも解法がのってませんでした。

以前質問させていただいたのですが、教科書に固有値が重解の場合の固有ベクトルを求める解法が省かれていて理解できませんでした。
問題はこんな感じです。
2×2行列式A
A=
|1 -1|
|4 -3|
の固有値と固有ベクトルを求めよ。
(自分の解法)
まず
与式=
|1-t -1|
|4 -3-t|
サラスの方法で展開し、
(1-t)(-3-t) - (-1)・4
=t^2 + 2t 1
=(t+1)^2
となるので固有値をλ1,λ2として、
λ1=-1,λ2=-1
(ここまではできたのですが、解が重解になってしまいました。固有ベクトルを求める方法ができなくて...続きを読む

Aベストアンサー

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n次の正方行列を相手にしてる場合は
n=dim(Im(A-λI))+dim(Ker(A-λI))
=rank(A-λI) + dim(Ker(A-λI))
だから
固有空間の次元
= dim(Ker(A-λI))
= n - rank(A-λI)

したがって,
A=
|1 -1|
|4 -3|
のとき,λ=-1とすれば
A-λI= <<<--- 質問者はここを書き間違えている
|1-(-1) -1 |
|4 -3-(-1)|
=
|2 -1|
|4 -2|
だから,rank(A-λI)=1
よって,固有空間は1次元
だから,本質的に(1,2)以外に固有ベクトルはないのです.
(0,-1)が固有ベクトルではないことは容易に確認できます.

A=
|0 0 1|
|0 1 0|
|-1 3 2|
の場合も同様.A-λIのランクを計算すれば2だから
固有空間の次元は1で,計算すれば(1,0,1)を固有ベクトルと
すればよいことが分かります.

重解であろうがどうであろうが,求める方法は同じだから
わざわざ取り上げることはないという話でしょう.

No.1さんと同様,記号の混乱があるので
「参考書」やらが間違ってるのか,質問者の転記ミスなどかは
分かりませんが,
>とありました。なぜなでしょう?
答えを確かめましたか?
本当にその「解答」があってますか?
大学の数学の本なんて結構間違い多いですよ.

ちなみに・・・λが固有値のとき
(A-λI)x = 0 の解空間が固有空間です.
これは線型写像 A-λI のカーネル Ker(A-λI) だから
n...続きを読む

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Q大学院別のTOEICの合格点を教えてください。

大学院入試でTOEICの点数を英語の点数として換算している大学院が多くあると知ったのですが大学院別にどのぐらいが合格点なのでしょうか?
東大の院生の平均点が730というデータはネットでみたのですが他のいろいろな大学院について教授からや友達からの情報でもいいので参考にさせてください。

Aベストアンサー

このサイトに、大学院入試でTOEIC(R)Testを活用する52の大学院が、
国公立、私立別で掲載されており、
ある一定のスコアで、英語の独自試験免除など、詳しい情報が見れます!

参考URL:http://www.toeicclub.net/graduateschool.html

Q集積点が、まったく分かりません!!

集積点の意味がまったくわかりません。詳しく教えてください。

Aベストアンサー

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるようなx以外のAの要素が存在するような点」
と言い替えられます。

直観的な言い方をすれば、x∈XがAの集積点であるとは
「xのどんな近くにも(x以外の)Aの点がある」
と言う条件をみたすような点のことです。

ついでに集積点との対比で孤立点も覚えてしまいましょう。
集積点とはある意味で対照的なものが孤立点です。
すなわちx∈XがAの孤立点であるとは
xがAの要素であり  …(S1)
かつxのある近傍とAの共通部分にx以外のAの点が含まれない。…(S2)
ような点のことです。
Xが距離空間なら、これは
「あるεに対してxからの距離がε以下であるようなAの要素はxだけであるような点」
となります。

注意していただきたいのはx∈AであることはxがAの集積点であるためには
必要でも十分でもないということです。
xがAの点であってもそれが孤立点ならxは集積点ではないし、Aの点でないような
Aの集積点も存在します。
しかし孤立点と言う概念は集合Aの要素に対して与えられる概念ですから、Aに
属さない点が(S2)の条件だけ満たしてもそれをAの孤立点とは呼びません。

あとは距離空間(ユークリッド空間)での簡単な例を挙げておきますのでイメージをつかんで下さい

例(1)Xを2次元ユークリッド空間として
A={(x,y)∈X| x^2 + y^2 < 1} ∪ (2.0)
とします。つまりAは原点中心半径1の開円盤と点(2,0)の和集合です。
するとAの集積点(の集合)は
{(x,y)∈X| x^2 + y^2 ≦ 1}
すなわち原点中心半径1の開円盤とその境界となります。
点(2,0)は孤立点なので集積点ではありません。

例(2)Xを2次元ユークリッド空間として
A={(x,y)∈X| y = sin(1/x) ,x∈(0,∞) }
とします。Aの集積点(の集合)はA自身と集合
B={(0,y)∈X| y∈[-1,1] }
の和集合です。

例(3)Xを1次元ユークリッド空間として
A= { 1/n | n=1,2,…}
とします。原点{0}はAの集積点です。しかしA自身の点はすべて孤立点です。

例(4)Xを1次元ユークリッド空間として
Aは開区間(0,1)の有理点。すなわち
A= { x∈(0,1)|xは有理数 }
とします。Aの集積点(の集合)は閉区間[0,1]です。

MANIFESTさんがどのくらいの予備知識をお持ちなのかわからないので
答えにくいのですが、
集積点について質問されると言うことは少なくとも位相空間についての基本的な
用語くらいはご存知だと仮定して説明します。
距離空間はご存知でしょうね。

Xをある位相空間、AをXのある部分集合とします。
x∈XがAの集積点であるとは
xの任意の近傍とAの共通部分にx以外のAの点が少なくとも1つは含まれる
ような点のことです。
Xが距離空間なら、これは
「任意のεに対してxからの距離がε以下であるよう...続きを読む

Qジョルダン標準形ってなんのため?

線形代数の本を読んでいると、後ろのほうにジョルダン標準形がでてきます。
書いてあることをなぞることはなんとかできるのですが、固有値の次にいきなり前触れもなく現れるので、これが
・どういう(歴史的)要請・経由で
・何のために
現れたのかがわかりません。

ジョルダン標準形の本質は何でしょうか?

Aベストアンサー

ジョルダンは線形代数の最終関門でこの証明を一度は理解していたほうがいいでしょう
証明は灯台出版から単行本が出ていて何種類か乗っています
私は単因子(あるいは行列子因子)による方法を一度は理解しましたが忘れました
でも必要があれば読み返せばすぐに思い出せるようにはなっています
定理は簡単なのですが重要です
制御理論で使います
ジョルダンの標準形は正則行列で対角化できない行列を準対角行列に分解するものです
x(t)を要素がtの関数の列ベクトルとし
Aを要素が定数の正方行列とし
v(t)を要素がtの関数の列ベクトルとし
x’(t)=A・x(t)+v(t)としたときに
正則行列PによってP^(-1)・A・Pが対角行列になるならば
x(t)を簡単に求めることができます
しかし正則行列PによってP^(-1)・A・Pが対角行列にならなくても
正則行列PによってP^(-1)・A・Pがジョルダンの標準形になれば
少し複雑になりますが簡単にx(t)を求めることができます
本質が何打という質問は何回で答えることができる人はいないのでは?

ジョルダンは線形代数の最終関門でこの証明を一度は理解していたほうがいいでしょう
証明は灯台出版から単行本が出ていて何種類か乗っています
私は単因子(あるいは行列子因子)による方法を一度は理解しましたが忘れました
でも必要があれば読み返せばすぐに思い出せるようにはなっています
定理は簡単なのですが重要です
制御理論で使います
ジョルダンの標準形は正則行列で対角化できない行列を準対角行列に分解するものです
x(t)を要素がtの関数の列ベクトルとし
Aを要素が定数の正方行列とし
...続きを読む

Qlim[n→∞](1-1/n)^n=1/e について

こんにちは

lim[n→∞](1+1/n)^n=e
が成り立つことは簡単に示せるのですが、
lim[n→∞](1-1/n)^n=1/e
となることの証明はどのようにすればいいのでしょうか?
ご存知の方がいらっしゃいましたらご回答よろしくお願いします。

Aベストアンサー

e=lim(1+t)^(1/t)   〔t→0〕
がeの定義なので、(t→+0でもt→-0でもOK)
-1/n=tとおきます。

n→∞のとき、t→-0なので、
(与式)=lim(1+t)^(-1/t)   〔t→-0〕

これを変形すると、
=lim{(1+t)^(1/t)}^-1   〔t→-0〕
=e^-1
=1/e

高校の範囲なら、この証明で大丈夫です。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング