
No.1ベストアンサー
- 回答日時:
(1/√3+1/√2)/(1-1/√3×1/√2)の分子と分母に√6をかけると
(√2+√3)/(√6-1)
になります、ただし今回はtanの加法定理
tan75°=(tan45°+tan30°)/(1-tan30°tan45°)
を使っていますが、tan45°=1なので(画像では1/√2としていますが)
答えは2+√3になります
No.3
- 回答日時:
まず、
どこから1/√3 という数字が出て来たんでしょうか?
手元で計算したところ計算式には間違いはありませんが、
この1/√3 が間違いの元です。
正解はもう一つの答え・2+√3 の方です。
三角関数の定義を使って使い慣れないtanではなく使い慣れたcos・sinに変換、
さらに三角関数の加法定理を使って計算式として使いやすい角度に分解しましょう。
No.2
- 回答日時:
こんばんは。
画像もあるので、わかることはわかるのですが、
質問本文の式は、ちゃんとかっこをつけるなどして、明確に書いてください。
>>>途中計算を教えて下さい。
与式 = (1/√3 + 1/√2)/(1 - 1/√3・1/√2)
= (1/√3 + 1/√2)/(1 - 1/√6)
分母と分子に √6 をかけて
= (√6/√3 + √6/√2)/(√6 - 1)
= (√2 + √3)/(√6 - 1)
>>>答えが3√3+4√2/5となっていますが、もう一つ違う問題では答えが2+√3になってます。
上のつづき。
分母を簡単にするため、
(a+b)(a-b) = a^2 + b^2
を利用します。
すなわち、分母と分子に √6 + 1 をかけます。
与式 = (√2 + √3)/(√6 - 1)
= (√6 + 1)(√2 + √3)/(√6 + 1)(√6 - 1)
= (√6 + 1)(√2 + √3)/((√6)^2 - 1^2)
= (√6 + 1)(√2 + √3)/(6 - 1)
= (√6 + 1)(√2 + √3)/5
分子だけ計算すると、
(√6 + 1)(√2 + √3)
= √6×√2 + √6×√3 + 1×√2 + 1×√3
= √12 + √18 + √2 + √3
= √(2^2×3) + √(3^2×2 + √2 + √3
= 2√3 + 3√2 + √2 + √3
= 3√3 + 4√2
よって、
与式 = (3√3 + 4√2)/5 = こたえ
>>>どちらかが間違ってるのでしょうか?
上の答えから、どうやっても √2 は消えないので、
2+√3 という答えは間違ってますね。
以上、ご参考になりましたら幸いです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 場合の数 5人が4つの箱のいずれかを選ぶ(人箱全て区別あり) 1人だけ、その人しか選んでいない箱を選 1 2022/12/14 12:49
- 簿記検定・漢字検定・秘書検定 正答率の出し方について 1 2023/01/04 17:15
- 数学 分からなすぎて嫌になります……。 三角関数の合成についての問題です (4)-sinθ+√3cos 1 2023/02/18 00:33
- 数学 数学3の微分法・対数関数の導関数に関しての質問です。 [ ] は絶対値を表しています。 y=log[ 3 2022/05/24 14:07
- Excel(エクセル) エクセル 関数について質問です。 2 2022/10/03 11:14
- 数学 画像の問題について、途中式~解答までをなぜそうなるのかの解説ふまえて教えてほしいです。 (打ち込むと 1 2023/02/23 11:50
- 数学 数学 数と式 5 2023/04/08 15:47
- 数学 数Ⅱ 方程式の解の判別 7 2023/05/11 19:23
- 数学 式の展開について、途中式を知りたいです 7 2023/03/11 18:59
- 小学校 小6算数の問題について教えてください 2 2023/08/24 10:30
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
0.5時間などの時間計算の方法
-
1000分の3は何%ですか
-
1/2÷1/2はなぜ1になるのか?
-
数Ⅲ極限 写真の問題の途中計算...
-
1÷0の答えを教えて下さい
-
血の濃さ
-
a^3/(a-b)(a-c) +b^3/(b-c)(b-a...
-
分数を整数で割る時の考え方
-
分子の括弧
-
ゼロ乗の考え方について
-
1000分の10の計算の仕方を教え...
-
分数の分子が1で後ろに文字が掛...
-
logeの計算
-
付き合った日を1日から数える...
-
10の0.3乗って??
-
1000円の3割の計算教えて下さい
-
小数第一位までのときは、第二...
-
有効数字について
-
化学(原子量)の有効数字
-
【Excel】 SUMPRODUCT関数の高速化
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報