ルートの入った方程式が解けません。どなたか、次の方程式の解き方を教えて頂けませんか?
√(x-4)2乗+10の2乗 + √(x-10)2乗+90の2乗 = 100.5442
環境学で、遮音壁の高さを計算するのに必要なのですが、数学を忘れてしまい、行き詰っています。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

(x-4)2乗+10の2乗や(x-10)2乗+90の2乗は、√の中にあるんでしょうか?



だとしたら次のようにしてみてください。(途中まで解いたのですが係数がすさまじい数字になって、間違いなく計算ちがいしているので具体的数値は書きません) A=100.5442とします。また、10^2=100、90^2=8100

両辺を2乗する。 (x-4)^2+100+2√((x-4)2乗+100)√((x-10)2乗+8100)+(x-10)2乗+8100=A^2

√のついていない項を右辺へ移項  2√((x-4)2乗+100)√((x-10)2乗+8100)=A^2-(x-4)^2+100-(x-10)2乗+8100

これの両辺を2乗すると√が消え、整理すると4次の項が消えて3次方程式に成ります(ひょっとすると2次方程式?)。

カルダノの公式を使うか、数値的に解くことになるでしょう。数値的にとくなら最初からエクセルのゴールシーやかソルバーを使った方が簡単かもしれません。

あと、2乗を2回もしているので無縁の根が混じるでしょう。検算を忘れずに行なってください。
    • good
    • 0

先ずは


90=A
100.5442=B
と置いて計算します
最後にA,Bにそれぞれの値を代入すればいいです
図を添付しますが1式と2式では結果が異なるので注意してください
このような計算に具体的な値は使わないほうが楽です

おそらく1式だと思います
両辺を二乗してからxを含まない項を右辺に移項すればいいのです
「ルートの入った方程式の解き方」の回答画像3
    • good
    • 0

√a^2=a

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q地図:バスのルート検索

googleでもyahooでも何でもいいのですが、地図検索でルートを調べたいのですが、電車ではルート検索できるのですが、バスのルート検索できません。

バスのルート検索ができるサイトとそのやり方を教えてください。

回答よろしくお願いします。

Aベストアンサー

直接、乗車バス停から降車バス停の時刻を調べることはできませんが、
私が愛用させていただいた、
『旅に出たくなるページ』内の『旅に出たくなる路線図』さんが昨年の12月31日をもって閉鎖されてしまいました。これが最高だったので残念です。
しかし、リンク集は残されていますので検索してみる価値は十分有ると思います。
http://ryokou.gozaru.jp/index.html

『時刻表はココから』さんには、各バス会社のホームページや、地域によっては、その地域全体を調べられるものも記載されています。
http://homepage2.nifty.com/fuguta/time/i/i-menu.html

『NAVITIME』さんは、全国の各バス停の発車時刻を調べることができますが、掲載されていないバス停が多々有ります。
http://www.navitime.co.jp/bus/

地域別では、
・関東地方 『バスサービスマップ』さん(路線図の検索)
http://www.geocities.jp/busservicemap/
・東海地方 『路線図ドットコム』さん(路線図の検索)
http://www.rosenzu.com/
・九州地方 『九州のバス時刻表』さん(停留所名で九州のほとんどのバスが検索できます)
http://qbus.jp/time/
などがあります。

miya_HN さんがどの地域をお探しかわかりませんが、手間がかかっても良ければ、各都道府県のバス協会等の大まかなバス路線図は存在すると思いますので、そこでバス会社を調べて、そのバス会社のホームページがあればそれを参照してみてはいかがでしょうか。

直接、乗車バス停から降車バス停の時刻を調べることはできませんが、
私が愛用させていただいた、
『旅に出たくなるページ』内の『旅に出たくなる路線図』さんが昨年の12月31日をもって閉鎖されてしまいました。これが最高だったので残念です。
しかし、リンク集は残されていますので検索してみる価値は十分有ると思います。
http://ryokou.gozaru.jp/index.html

『時刻表はココから』さんには、各バス会社のホームページや、地域によっては、その地域全体を調べられるものも記載されています。
http://homepage2...続きを読む

Q【問題】f(x)=x^4+2x^3+10x^2+(10-2√2)x+2

【問題】f(x)=x^4+2x^3+10x^2+(10-2√2)x+23とする。実数αに対して, f(x)をx^2+αで割ったときのあまりを求めよ。このことを用いてf(x)を実数の範囲で因数分解せよ。

あまりを(10-2√2-2α)x-α(10-α)+23と求めたのですが…
ここからこれをどうすればいいのかわかりません^^;
あまりを0とおくのかと試みたのですが…

どなたか教えてください。
よろしくお願いします!

Aベストアンサー

>あまりを(10-2√2-2α)x-α(10-α)+23と求めたのですが…
>ここからこれをどうすればいいのかわかりません^^;
>あまりを0とおくのかと試みたのですが…
そのやり方で良いですよ。
xの係数=0とおいて、αを求めて下さい。
そのαを定数項に代入すると定数項もゼロになります。

そうすると、そのαに対して、
f(x)は(x^2+α)で割れますので、商をQ(x)の式にαを代入すれば
f(x)=Q(x)(x^2+α)
の形に因数分解できたことになります。
Q(x)は2次式ですから、2次方程式の判別式Dで調べると分かると思いますが
D<0になるので実数の範囲では因数分解できないでしょう。

Q■地図ナビルート検索について!

■地図ナビルート検索について!
自宅のパソコンでルート検索できるソフトやサイトはありますか?
出来れば無料の物が良いのですが・・・? 有料でもOKです。

目的地と到着地を設定してルート検索ができるようなものを教えてください。
その他関連するご回答があればお願いいたします。m(_ _)m

Aベストアンサー

自動車であれば、
ルート検索‐NAVITIME
http://www.navitime.co.jp/drive/

電車であれば、
まるごとナビ|駅探
http://navi.ekitan.com/ppnavi/

などいかがですか。

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Qgoogle mapでのルート検索を良く利用していますが、一つ困ってい

google mapでのルート検索を良く利用していますが、一つ困っている事があります。

google mapが検索したルートを少しアレンジするのに白丸○で表されたポイントを
ドラッグすれば良いのですが、うまくドラッグ出来た試しがありません。

付近をぐるぐる何度も周回するようなルート地図が出来上がってしまいます。

何か途中のルートポイントを削除する方法などはあるのでしょうか?
みなさんはどのようにしてらっしゃいますか?

Aベストアンサー

補足確認しました。

(^^ゞ失礼しました言葉足らずでした。

不要なルート表示に○が有る時は○にカーソルを合わせて右クリックで、「このポイントを削除」で消せると思います。

無い場合は不要なルートを利用したいルートへドラッグで消えると思います。

>ちょっとごちゃごちゃした右左折の多いルート時なのか、時々ポイントをドラッグするとぐるぐる同じところを周回するんです。

ご指摘の様に表示してるルートと利用したいルートが近い場合はぐるぐると回る様な表示になりますね!

その様な場合は地図を拡大してルートを設定(上記の方法)を試して見て下さい、これは仕様だと思うので根気良く不要なポイント等を削除し続けて我慢するしか無いと思いますよ~?

Qx≧1の時2(√(x+1)-√x),2(√x-√(x-1)),1/√xの大小関係は

こんにちは。


x≧1の時2(√(x+1)-√x),2(√x-√(x-1)),1/√xの大小関係は?

という問題なのですが
2(√(x+1)-√x) < 1/√x < 2(√x-√(x-1))
という大小関係になると思います。
単に引き算してもなかなか2乗の形に持ってけません。
どうやって証明するのでしょうか?

Aベストアンサー

ヒントのみ
1/√xに着目して
分子の有理化をしてください。
そして、逆数の大小の比較(差をとって比較)してください。
大小関係が決まりますので、その逆数をとってもとの大小関係が決まります。
ただし、不等号の両辺が1より大か、小かを確認して逆数の不等号を考えてください。

結果の大小関係は正しいですね。

Q途中を指定できるルート検索サイト

ルートMAPを使っていますが、途中ポイントを指定して使用できません。
どこか途中ポイントを1-2点指定して検索できるサイトがあれば紹介お願いします。
→全て途中ポイントを目的地にして検索し足せばよいのはわかっていますが、あっちこっちポイントを変えたいので、、
使い方
  (1)目的地と出発地は決まっているのですが、途中観光する場所が3-4個所あるのでその組み合わせをそれぞれ指定して検索したい。
(2)検索条件を入れて検索しているが、部分的に自分の知っている最短ルートになっていない。そこでルートを指定して検索したい(私の方が絶対近いと思っているが、、、?)などなど

Aベストアンサー

 参考にならない意見ですいませんが、中継点を指定できるウェブ検索は、今のところまだないと思います。
(将来的には近いうちにどっかが始めると思いますが、2006年5月現在ではまだ見ないです)

 現在ルート検索で使われている処理方式は「可能性のある全てのルートを検索し、その中から最適なものを選ぶ」という処理方式が取られていることが多いです。
 そのようなアルゴリズムである関係上、「ウェブにルート検索を載せた」こと自体、実は凄いことなんです。

 中継点付きルート検索の場合、中継点の数だけ同じ検索を繰り返すため処理が2倍3倍と増えていく関係上、かなり潤沢な資金のある会社でなければ、それほどの能力を持ったシステムは導入できないのが実情です。
 地図検索サイトを運営する多くの会社にとって、ルート検索は一般に「おまけ機能」であることが多く、資金を裂けないわけです。

(カーナビに搭載された検索システムは、あなたが個人的に使うからこそ中継点指定ができるんです。
 ウェブ検索では何人もの人間が同時に使うのですから、みんなでサーバーの処理能力を譲り合わなければいけません。「みんなで分け合ってもなお余裕のあるシステム」となると、それなりに処理能力が求められるっちゅーわけです)

 参考にならない意見ですいませんが、中継点を指定できるウェブ検索は、今のところまだないと思います。
(将来的には近いうちにどっかが始めると思いますが、2006年5月現在ではまだ見ないです)

 現在ルート検索で使われている処理方式は「可能性のある全てのルートを検索し、その中から最適なものを選ぶ」という処理方式が取られていることが多いです。
 そのようなアルゴリズムである関係上、「ウェブにルート検索を載せた」こと自体、実は凄いことなんです。

 中継点付きルート検索の場合、...続きを読む

Qx=√2+√3+√5+√7が満たす整数係数方程式は?

x=√2が満たす整数係数方程式は、

x^2-2=0

です。
x=√2+√3が満たす整数係数方程式は、2乗して、

x^2=5+2√6
移項した後に2乗して、
(x^2-5)^2=24
x^4-10x^2+1=0

です。
x=√2+√3+√5が満たす整数係数方程式は、移項した後に2乗して、
x^2+2-2√2=8+2√15
移項した後に2乗して、
(x^2-6)^2=2√2+2√15
x^4-12x^2+36=68+8√30
再び移項した後に2乗すれば結局8次式になります。

では、x=√2+√3+√5+√7が満たす整数係数方程式はどうなるのでしょうか?
方針だけでも教えてください。
移項した後に2乗しても、ルートの個数が減ってくれそうにありません。

さらに、これをどんどん続けることは可能でしょうか?

Aベストアンサー

整数係数方程式が x=√2 という解を持つなら x=-√2 も解となります.
したがって,x=√2が満たす整数係数方程式は、
 (x-√2)(x+√2) = 0
⇔ x^2 - 2 = 0
となります.

同様に考えると x=√2+√3 の場合は
 (x-√2-√3)(x-√2+√3)(x+√2-√3)(x+√2+√3) = 0
⇔ {(x-√2)^2 - 3}{(x+√2)^2 - 3} = 0
⇔ {(x^2-1) - 2√2x}{(x^2-1) + 2√2x} = 0
⇔ (x^2-1)^2 - 8x^2 = 0
⇔ x^4-10x^2+1=0
となります.

以下同様に,
 x=√2+√3+√5
の場合は
 x=±√2±√3±√5
という8個の解を持つ8次方程式,
 x=√2+√3+√5+√7
の場合は
 x=±√2±√3±√5±√7
という16個の解を持つ16次方程式を考えることで
整数係数の方程式を得ることが出来ます.

Q・カーナビのようにルート検索ができるサイト

・カーナビのようにルート検索ができるサイト

自宅のパソコンで出発地と目的地を入力してルート検索、距離、所要時間などがわかるカーナビのようなサイトを探しているのですが知っている方いませんでしょうか?
よろしくお願いします。

Aベストアンサー

マップファンを使っています。

http://www.mapfan.com/

『ルート検索』で多分ご希望どうりのものが出来ると思います。
ラリーマップは便利で楽しいですよ(笑)


人気Q&Aランキング

おすすめ情報