
No.2ベストアンサー
- 回答日時:
どちらも正しく、どちらも間違っています。
本に書いてあるから、ではなく、設計によって違ってきます。
つまり、入力電圧、入力のリップル含有率、出力電流、出力に求めたいリップル含有率、出力のリアクタンス分・・・などなど
それによって計算します。
それから、リップル率によってコンデンサに流れる電流を求め、そこから発熱を求め、それに耐えられるコンデンサを選びます。
また、入力電圧と出力電圧の差、出力電流、リップル率、使用状態の周囲温度などから、レギュレータの発熱を計算し、熱抵抗を求めて、放熱板を決定します。
かなり面倒な計算なので、おおよその回答を言いますと、7805は出力が5V1Aの定格ですから、最大0.8Aまで使うとし、入力はAC6Vの全波整流として、入力も出力も100μFの電解コンデンサと0.1μFのプラスチックコンデンサを並列接続したもので、いけると思います。
ただし、0.1μFのコンデンサはレギュレータの足に直結します。
100μFのコンデンサは回路中についていればどこでも良いです。
入力はAC6Vの全波整流で、出力電流を0.8A取ると、レギュレータで約1.6Wを消費しますので、周囲温度を30℃まで使うとして、ジャンクション温度を80℃にしたければ、熱抵抗は25℃/W程度の放熱板が必要です。
これ以外の入力電圧や、出力電流の場合は再計算が必要です。
コンデンサ容量の計算方法まで教えていただいてありがとうございます。
正直???ですが、まずは本の使用例を参考にして色々やってみます。ありがとうございました。
No.3
- 回答日時:
2つのコンデンサーの種類に注目してください。
この二つのうち22μFと100μFは電解コンデンサーで0.1μFはセラミックコンデンサーなどが使われているはずです。この二つは役割がまったく異なりますのでどちらか一つで良いと言う物ではありません。22μFと100μF電源のリップルや比較的低い周波数の電圧の変化を抑えるためのもので、0.1μF方はIC内部で発生するスイッチング動作による高い周波数のノイズのキャンセルに用いられているのです。高い周波数のノイズのキャンセルを行うには発生源にできるだけ近い位置に取り付けないと意味がありませんので要注意です。78XXなどのシリーズではこのコンデンサーを取り付けないと異常発振を起こして壊れてしまう場合がありますので必ず必要です。電源用IC以外でもゲートICなどの電源配線部分にICのすぐ近くに小さなコンデンサーが取り付けられているのもこのためです。ちなみに電解コンデンサーは大きな容量を得ることはできるのですが、周波数特性が悪く高い周波数では使えません。一方セラミックコンデンサーなどは周波数特性は良好なのですが大きな容量の物を作るのは無理(とてつもなく大きくなってしまう)なのでそれぞれの特性を生かして、用途に応じて組み合わせているのです。電子部品はコンデンサーに限らず他の部品(抵抗やコイルやダイオードなどの半導体など)でも、用途に応じて多くの種類があり、目的別に使い分けているのです。
シロウト級なのでごく一部しか理解不能ですが、コンデンサは必要に応じた物が必ず必要なのですね。これから色々勉強してみます。ありがとうございました。
No.1
- 回答日時:
両方必要です。
大きい二つはリップルノイズ除去用、0.1uFは内部コンパレータの発振防止用です。
つまり、大きいコンデンサは電源の入力電圧や出力電圧の変動を防止する上で必要なのですが、0.1uFはレギュレータIC内部にある電圧比較用の回路が不安定な動きをするのを防止する目的で取り付けられます。このコンデンサはICから出来るだけ近い部分に取り付けてやる必要があります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
三端子レギュレータの発振防止用のセラミックコンデンサについて
物理学
-
三端子レギュレータのパスコンにつきまして 三端子レギュレータNJU7223のデータシートに記載の測定
その他(教育・科学・学問)
-
三端子レギュレータについて質問です ①24→5vに落としたいです、発熱を防ぐために3端子の両側にカー
iOS
-
-
4
電源回路
物理学
-
5
7805が煙を吹いて壊れました。
その他(趣味・アウトドア・車)
-
6
電源電圧はなぜ3.3Vなのか?
その他(教育・科学・学問)
-
7
オペアンプに使用するパスコンは何故0.1μFなのでしょう?
その他(自然科学)
-
8
オペアンプ反転増幅回路
物理学
-
9
三端子レギュレータの平滑コンデンサの無極性化について
その他(パソコン・周辺機器)
-
10
直流を降圧するのに簡単な方法は?
バッテリー・充電器・電池
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
低域通過フィルタの周波数に対...
-
コンデンサの端の効果に関して
-
ACL?
-
周波数特性の利得の低下について
-
この平行平板空気コンデンサの...
-
電解コンデンサの異常は見た目...
-
テレビの高圧部品の取り扱いに...
-
三端子レギュレータに付けるコ...
-
電子部品をバラックで組むため...
-
ケーブルの寄生容量を測るため...
-
発振回路について
-
ウィーンブリッジ発振回路について
-
フィルタについて
-
コンデンサを使った遅延回路に...
-
フォトダイオードに逆バイアス...
-
マイクロストリップラインについて
-
塩電解コンデンサは液漏れする...
-
コンデンサの精度に関して
-
誘電率(ε)と誘電正接(Tanδ...
-
CR結合増幅回路について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
低域通過フィルタの周波数に対...
-
オペアンプに使用するパスコン...
-
三端子レギュレータに付けるコ...
-
コンデンサの端の効果に関して
-
電荷Qを蓄えた平行平板空気コン...
-
この問題の解き方を教えてくだ...
-
DCカット用コンデンサの容量
-
増幅回路内のコンデンサの役割
-
電解コンデンサを使って12V...
-
ACL?
-
コンデンサーの図で直列なのか...
-
LAN用パルストランスのセンター...
-
コンデンサの精度に関して
-
コンデンサの静電容量の周波数...
-
誘導M型フィルタについて教え...
-
電圧電源回路の実験で、コンデ...
-
低圧コンデンサーに使用する電...
-
高校物理のコンデンサーで これ...
-
コンデンサー負荷とは?
-
図のサイリスタ制御調整回路に...
おすすめ情報