マンガでよめる痔のこと・薬のこと

DCカット用に使用するコンデンサの容量ってどう算出したらいいのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

A2です。



先ほどの(1)式で、
Ec=Xc/(Z^2+Xc^2)^-0.5・・・(1)

の-0.5乗は誤りで、0.5乗が正しいです。
((2)は正しい)

すみませんでした。
(この形は見にくいので、√をつけた式を書いてみてください・・・分母全部に√がかかる)
    • good
    • 0

1. 再生したい(通過させたい)最低周波数:f(Hz)


2. そのコンデンサの後に接続する回路のインピーダンス(負荷インピーダンスZ:(Ω)
3. 通過損失(dB)
によって決定します。
(ただし、一般には通過損失は1dB以下にとります)

入力回路から見た場合、入力信号はコンデンサと負荷インピーダンスに分圧されてかかります。
コンデンサにかかる電圧比Ecは、
  Ec=Xc/(Z^2+Xc^2)^-0.5・・・(1)
  分母側は、2乗和に√(平方根)がかかるのですが、そういう記載が出来ない
  ので、0.5乗で代用します。(^_^;)

負荷にかかる電圧比Elは、
  El=Z/(Z^2+Xc^2)^0.5・・・(2)
となります。

従って、コンデンサのインピーダンスと、負荷インピーダンスが同じになるように
コンデンサ容量を選んだ場合には、両方の電圧比は同じ
  Ec=El=0.707
となり、3dBの通過損失となります。

例1 負荷インピーダンス10kΩで、最低周波数100Hzとし、通過損失を0.5dBにとりたい。
 
解 0.5dBは電圧比0.944
 インピーダンス比が1:0.35のとき、上記(2)が0.944となりますから(概算)、
 Zcは3.5kΩとする必要があります。
 100HzでZcが3.5kΩとなる容量は、
  Zc=1/(2ΠfC)・・・(3)
 の式から、0.454μFとなります。

計算が面倒であれば、(3)式だけ使って、負荷インピーダンスの1/3になるような容量を選ぶことで、通過損失を0.5dB程度に抑えることが出来ます。
    • good
    • 0

コンデンサは、DCをカットしますからDCのことは考えないでいいですね。


通したい交流分への電圧降下などの影響から、インピーダンスを設定してから容量を計算すれば、良いでしょう。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qカップリングコンデンサの容量は大きくしすぎるとよくない?

以前、カップリングコンデンサの容量を大きくしすぎるとよくない(直流を通過させてしまう?)
という話をどこかで目にした覚えがあるのですが、本当でしょうか?
(どこで目にしたのかは忘れてしまったのですが)

Aベストアンサー

はじめまして♪

回路上の設計にもよりますが、コンデンサーの容量を増やしても直流がそのまま通過する事は一般的にありません。

しかし、設計上の適した容量と言う物が有りますので、むやみに変更する事は止めるべきです。

昔のアナログ回路では実装の電線によるL分やC分なども考慮した回路図からは理解出来ない設計製品も多数有ります。
 
単純に「良い」「悪い」かと 質問されるレベルでは、本質的解決やスキルアップには繋がらないと思います。(なんて おおきな事が言えない 素人です。ごめんなさい。)

Qなぜ、直流カット?

電源回路(基板)のコンデンサで直流をカットできるのは解ったのですが、どうして直流をカットしなくてはいけないのでしょうか?
ぜひ教えて戴きたいと思います。

Aベストアンサー

信号処理用の電源回路とボックス内冷却用電源回路を2つ同一BOX内に別々に付けるという事と理解して話します。
信号処理の信号レベルにもよりますが、気を付けるのは2点です。
1.AC100V側からの回り込みノイズ
2.信号処理回路への電磁誘導ノイズ

対策
1.AC100V側にLCやサージキラーを付ける。
2.出来るだけ離す。または鉄などのシールド板を付けて遮蔽する

こんなとこですかね。

Qプルアップ抵抗値の決め方について

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調節していって電圧降下が0.9Vとなるように設定するのでしょうか。どうぞご助力お願いします。



以下、理解の補足です。
・理解その1
ふつう、こういう場合は抵抗値を計算するためには、電圧降下と抵抗に流れる電流が決まっていることが前提だと考えていました。V=IRを計算するためには、この変数のうち2つを知っていなければならないからです。
また、例えば5V/2Aの電源を使った場合、マイコン周りは電源ラインからの分岐が多いため、この抵抗に2A全てが流るわけではないことも理解しています。

電源ラインからは「使う電流」だけ引っ張るイメージだと理解しているのですが、その「使う電流」が分からないため抵抗値を決定できません。(ポート入力電流の最大定格はありますが…)


・理解その2
理解その1で書いたように、抵抗値を計算するためには、電圧降下と抵抗に流れる電流が必要だと理解しています。図2を例に説明します。Rの値を決めたいとします。
CD間の電圧降下が5Vであることと、回路全体を流れる電流が2Aであることから、キルヒホッフの法則より簡単にRの値とそれぞれの抵抗に流れる電流が分かります。今回の例もこれと同じように考えられないのでしょうか。

ほとんどこの分野に触れたことがないので大変初歩的な質問になると思います。

図1のような回路でプルアップ抵抗の値を決めたいと思っています。
B点での電圧を4.1Vとしたい場合について考えています。その場合、AB間での電圧降下は0.9Vとなります。

抵抗値×電流=0.9Vとなるようにプルアップ抵抗の値を決めるべきだと考えていますが、この抵抗に流れる電流が分からないため、決めるのは不可能ではないでしょうか?

抵抗値を決めてからやっと、V=IRより流れる電流が決まるため、それから再度流れる電流と抵抗を調...続きを読む

Aベストアンサー

NO1です。

スイッチがONした時に抵抗に流れる電流というのは、最大入力電流や最大入力電圧
という仕様から読めば良いのでしょうか。
→おそらくマイコンの入力端子の電流はほとんど0なので気にしなくてよいと思われます。
入力電圧は5Vかけても問題ないかは確認必要です。

マイコンの入力電圧として0Vか5Vを入れたいのであれば、抵抗値は、NO3の方が
言われているとおり、ノイズに強くしたいかどうかで決めれば良いです。
あとは、スイッチがONした時の抵抗の許容電力を気にすれば良いです。
例えば、抵抗を10KΩとした場合、抵抗に流れる電流は5V/10kΩ=0.5mAで
抵抗で消費する電力は5V×0.5mA=0.0025Wです。
1/16Wの抵抗を使っても全く余裕があり問題ありません。
しかし、100Ωとかにしてしまうと、1/2Wなどもっと許容電力の大きい抵抗を
使用しなければいけません。
まあ大抵、NO3の方が書かれている範囲の中間の、10kΩ程度付けておけば
問題にはならないのでは?

QdBm → V の変換方法

dBmをVに変換したいのですが、
以下の方法で正しいかどうかを見ていただけませんでしょうか?
もし間違っていたらご指摘の方をどうかよろしくお願いします。。。

※ちなみに50Ω系です。
(例)
「6.50dBm」→「?V」の場合

10log( P / 1mW )= 6.50
よって P=4.467mW
V^2=PR から、
V^2 =4.467*((10)^-3)*50
V ≒ 0.4726 

これは正しい計算方法ですか?

また、2つめの質問になってしまうのですが、
出てきた0.4726Vという値は0 to Peakなのでしょうか?
それともPeak to Peakになるのでしょうか。

皆様からのご回答をお待ちしております。。。

Aベストアンサー

計算は正しいです。
電力が1mWから6.5dBm(4.47mW)になる、つまり4.47倍の時
電圧は√(4.47)倍になります。つまり0.224V×√(4.47)=0.47V

Qオペアンプに使用するパスコンは何故0.1μFなのでしょう?

いろいろ本を見てもパスコンは0.1μFをつければいい。という内容が多く、
何故パスコンの容量が0.1μFがいいかというのがわかりません。
計算式とかがあるのでしょうか?

Aベストアンサー

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけです。
(従って、当然のことですが、10MHz~1GHzを扱うデバイスでは0.1μFでは不十分で、0.01μF~10pFといったキャパシタを並列に入れる必要が出てきます)

では低域の問題はどうでしょうか?
0.1μFは1MHzで2Ω、100kHzでは20Ωとなり、そろそろお役御免です。
この辺りからは、電源側に入れた、より大容量のキャパシタが守備を受け持つことになります。
(この「連携を考えることが、パスコン設計の重要なポイント」です)

ここで考えなければならないのが、この大容量キャパシタと0.1μFセラコンとの距離です。
10MHzは波長30mです。
したがって、(これも大ざっぱな言い方ですが)この1/4λの1/10、すなわち75cmくらいまでは、回路インピーダンスを問題にしなくてよいと考えます。

「1/40」はひとつの目安で、人によって違うと思いますが、経験上、大体これくらいを見ておけば、あまり問題になることはありません。
厳密には、実際に回路を動作させ、て異常が出ればパスコン容量を変えてみる、といった
手法をとります。

上記URLは、横軸目盛りがはっきりしていないので、お詫びにいくつかのパスコンに関するURLを貼っておきます。
ご参考にしてください。
http://www.rohm.co.jp/en/capacitor/what7-j.html
http://www.cqpub.co.jp/toragi/TRBN/contents/2004/tr0409/0409swpw.pdf
http://www.murata.co.jp/articles/ta0463.html

参考URL:http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

下記の「図2コンデンサの特性:(b)」を見てください。
http://www.cqpub.co.jp/dwm/contents/0029/dwm002900590.pdf

0.1μFのセラコンは、ほぼ8MHzで共振しています。
つまり8MHzまではキャパシタとしての特性を示しており、これより高い周波数ではインダクタと
なってしまうことがわかります。

0.1μFは単純に計算すると8MHzで0.2Ωのインピーダンスを示し、これは実用上十分低い
インピーダンスと考えられます。
つまり、大ざっぱにいって、10MHzまでは0.1μFのセラコンに守備を任せることができるわけ...続きを読む

Qコンデンサ=DCブロック ?

コンデンサ(高周波用)のカタログを見ていたら製品ラインに「広帯域 DC ブロック」というシリーズがありました。
そもそもコンデンサはDCをカットするものがあらたまってこういった製品群を提供するのは何か特殊な用途があるのでしょうか?

Aベストアンサー

例えばBSのアンテナなどではアンテナで受信した信号(12GHz)をアンテナのすぐ近くでもっと低い周波数(1GHz)に変換してからケーブルでチューナーへ送るようにしています。
これは12GHzの信号をケーブルで送ると減衰が大きすぎる為です。
周波数変換を行うためには回路が必要でそれを動かす為の電源が必要になります。
電源を回路に接続する為に別の電線を使うのはわずらわしい為受信した信号を送るケーブルを利用して電源を送るようにしています。
つまりケーブルには直流(AC電流の場合もある)と高周波信号が同時に流れていることになります。
直流を乗せる場合には高周波をブロックする回路素子(コイル)を使います。

参考URLの「1端子電流通過型の分配器」では電流が通過しないほうの端子はDCがブロックされています。

参考URL:http://www.maspro.co.jp/contact/bro/bro_03.html

Q抵抗の1/2W、1/4Wの違いについて

 クルマのLED工作で抵抗を使おうと思っています。

 その時 抵抗には、〇Ω以外にも
1/2W、1/4W等の規格があるのですが、よくわかりません
調べてみたところ<電力消費>という
キーワードが分かりましたが他がサッパリ・・・・

・例えば (+)1/4W 430Ω LED (-)という場合
抵抗を 1/2W 430Ωでは、ダメなのですよね?
 1/2Wの場合 〇Ωになるのでしょうか?

・また、1/2W、1/4Wは、単純に大きさ(太さ、長さ)で
判別がつくのでしょうか?

Aベストアンサー

抵抗が焼ききれずに使用できる or 性能を保証できる電力です。

例えば1kΩの抵抗に24Vの電圧を与えると、抵抗はP=V*I=(V^2)/R=0.576Wの電力を熱として消費します。
1/2W抵抗は0.5Wまでしか持たないので1W抵抗を使用することになります。
一瞬でも定格を越えるとダメなので、通常は余裕を持って考えます。

>・例えば (+)1/4W 430Ω LED (-)という場合
>抵抗を 1/2W 430Ωでは、ダメなのですよね?

定格を満たしているため問題ありません。

>・また、1/2W、1/4Wは、単純に大きさ(太さ、長さ)で
>判別がつくのでしょうか?

大抵の場合大きさで分かります。長さも太さも違います。
同一シリーズであれば確実にワット数の大きいほうがサイズがでかいです。
(1/2W>1/4W)

http://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q1314083328

Qオペアンプ反転増幅回路で+入力に繋がれた抵抗は何?

独学でアナログ回路の勉強をしている素人です。

オペアンプの反転増幅回路の基本回路だと、+入力はGNDに落としていますよね。
しかしネットで検索すると、抵抗を介してGNDへ落とす回路を見かけました。
この抵抗の役割がわからず、困っています。

実際の回路の画像を添付しました。
添付画像の赤い矢印のところの抵抗のことですが、これはどのような役割をしているのでしょうか。
一段目のオペアンプのように抵抗を介さずGNDに落としてはいけないのでしょうか。

自分が購入したアナログ回路の設計入門書にも(入門だからか)載っていませんし、自分なりに調べましたが、この抵抗の役割だけどうしても分かりません。

どうかご教授お願い出来ませんでしょうか。
宜しくお願いします。

Aベストアンサー

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかっている項が誤差になります。R4 がない場合は、式(A)で R4 = 0 としたものになるので
Vout = -[ (R3/R1)*Vin1 + (R3/R2)*Vin2 + Ib*R3 ]
となって Ib*R3 が誤差になります。ところが、R4 を入れて、添付図の最後の式のようにR4の抵抗値を調整すると、Ibの項が 0 となって、オペアンプの入力端子に流れるバイアス電流による誤差をなくすことができます。

ご質問の回路では、R1 = 20kΩ、R2 = 20kΩ、R3 = 20kΩ なので、バイアス電流による誤差をなくすには、本来は R4 = 1/( 1/20e3 + 1/20e3 + 1/20e3 ) = 6.67e3 Ω= 6.67kΩ にすべきです。

オペアンプの入力端子に流れるバイアス電流による誤差は、バイアス電流 Ib が大きいほど大きくなるので、FET入力のオペアンプやCMOSオペアンプのように、Ib がpA未満と非常に小さい場合には、添付図の式(A)の Ib 自身が非常に小さいので、R4 を入れなくても(R4を短絡しても)誤差は小さくなります。R4 を入れて誤差を小さくしたほうがいいのは、一般的に、Ib が 100nA以上のオペアンプを使った場合になります。

LM358の場合は Ib が最大100nAと、無視できる境界線あたりですが、ご質問の回路は交流だけを加算するもの(出力コンデンサで直流がカットされている)なので、バイアス電流によってVoutに直流的な誤差電圧が少々乗っていても問題ありません(オペアンプにLM358を使うのならR4はなくてもいい)。

なお、添付図では、オペアンプの反転入力端子(-)に流れるバイアス電流も非反転入力端子(+)に流れるバイアス電流も同じ Ib としていますが、現実には、この電流にはわずかな違いがあります(その違いを入力オフセット電流といいます)。しかし、この違いは一般に小さいので無視できることが多いです。

この抵抗は、オペアンプの入力端子に流れるバイアス電流による、出力電圧の理想値からのずれを抑えるものです。tadysさんと同じ主旨ですが、定量的には、理想値からのずれ(DC電圧のずれ)は、添付図の式(A)の Ib がかかった項になります。

添付図は、オペアンプを使った2入力の加算回路です。Vin1 と Vin2 という2つの入力電圧を加算し、正負を反転した電圧が出力電圧(Vout)になるものですが、オペアンプの入力端子に流れるバイアス電流 Ib が無視できない場合、添付図の式(A)のように、Ib のかかってい...続きを読む

Qオシロスコープのカップリング

オシロスコープの設定で、
“DCカップリング”か“ACカップリング”かを
設定する項目があるのですが、
どの様に使い分ければいいのでしょうか。
測定する波形によって使い分けるのだと思うのですが、
単に直流波形を測定する時はDCカップリング、
交流波形を測定する時はACカップリング
ではダメなのでしょうか?

Aベストアンサー

オシロスコープで観測するものは、交流信号であることがほとんどです。(まれに直流信号も観測します)
交流信号は、グランドを中心に振幅をもっているものもあれば、ある直流電位を中心に振幅を持っているものもあります。

DCカップリングで波形を観測すると、直流成分も同時に観測することができます。
例えば、直流2Vに500mV(P-P)の信号が乗っている波形を観測すると、その信号はグランドラインより2V上昇したところで500mV(P-P)の振幅を見せます。
同じ信号をACカップリングで観測すると、直流成分の2V(DC)が排除されるので、グランドライン上で500mV(P-P)の振幅を見せます。

DCカップリングとACカップリングの使い分けですが、基本的には信号を観測するという特性上、ACカップリングで良いかと思います。しかし、周波数が低くなると(100Hz以下では注意)、カップリングにコンデンサを用いているため、正しい振幅を表現しきれない可能性がでてきます。そのような時は、DCカップリングにします。
DCカップリングで不都合が生じるのは、小さい交流信号が大きな直流成分に乗っているときです。
例えば、直流10Vに100mV(P-P)の信号が乗っていると、VOLTS/DIVは、50mVか20mVにしないと信号をきれいに見ることができません(1倍プローブ時)。しかし、直流成分が10Vもあるので、信号が管面からはみ出して見えなくなってしまいます。
これくらい信号と直流成分に差があると、グランドラインを調整しても、まず、信号を見ることはできないでしょう。

要は、信号が最もきれいに見える状況を作り出せれば良いのです。

オシロスコープで観測するものは、交流信号であることがほとんどです。(まれに直流信号も観測します)
交流信号は、グランドを中心に振幅をもっているものもあれば、ある直流電位を中心に振幅を持っているものもあります。

DCカップリングで波形を観測すると、直流成分も同時に観測することができます。
例えば、直流2Vに500mV(P-P)の信号が乗っている波形を観測すると、その信号はグランドラインより2V上昇したところで500mV(P-P)の振幅を見せます。
同じ信号をACカップリングで観測すると、直流成分の2V(...続きを読む

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む


人気Q&Aランキング