教えて!gooにおける不適切な投稿への対応について

ある複数の空間座標(x1,y1,z1)~(xn,yn,zn)(nは3以上)から、平面近似式である最小二乗平面の方程式を求める関数を作ろうと考えています。
平面方程式はz=ax+by+c(a,b,cが定数)であらわされ、引数を座標と座標個数n、戻り値をa,b,cにします。

ここ(http://oshiete1.goo.ne.jp/qa2802443.html)を参考に
最小二乗平面の連立方程式を解くコードを書いたのですが、
どうも答えが合いません。どなたかご教授願えないでしょうか?
開発環境はC++Builder2007です。
↓の数式をコードにしましたが、コードが間違っているのか、
数式自体がダメなのかさっぱりわかりません。

//与えられるn個の3次元座標(xi,yi,zi)から平面方程式を求める
//平面方程式:z = ax + by + c
//最小二乗平面を求める連立方程式は下記のようになる。
//aΣxi^2 + bΣxiyi + cΣxi = Σxizi
//aΣxiyi + bΣyi^2 + cΣyi = Σyizi
//aΣxi + bΣyi + cn = Σzi
//これを行列で解く
//|Σxi^2 Σxiyi Σxi | |a| = |Σxizi|
//|Σxiyi Σyi^2 Σyi | |b| = |Σyizi|
//|Σxi Σyi n | |c| = |Σzi |
//ここで
//|Σxi^2 Σxiyi Σxi |
//A =|Σxiyi Σyi^2 Σyi |
//|Σxi Σyi n |
//
//|Σxizi|
//B =|Σyizi|
//|Σzi |
//
//|a|
//C =|b|
//|c|
//
//とすると
//
//C =B・A^-1
//
//で求めることができる

gooドクター

A 回答 (1件)

> //これを行列で解く


の次に書かれている式をA,B,Cを使って表すと
AC=B
ですから
C=A^(-1)B
であって
> C =B・A^-1
ではありません。
    • good
    • 0
この回答へのお礼

教えて頂き、ありがとうございます。

Aは3×3行列(A^-1も3×3行列)、Bは3×1行列ですから
C=B・A^-1は計算できないですね。

C=A^(-1)Bでコードを修正して、計算してみます。

お礼日時:2009/12/13 14:05

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

gooドクター

人気Q&Aランキング