重要なお知らせ

「教えて! goo」は2025年9月17日(水)をもちまして、サービスを終了いたします。詳細はこちら>

電子書籍の厳選無料作品が豊富!

こんにちは、
英文交じりの質問で申し訳ないのですが、宜しくお願い致します。

隣接角(Adjacent Angles)の定義は知ってます。
そして、隣り合ってる角の合計は180 ° まで、と解釈してます。
(Adjacent Angles Two angles are Adjacent if they have a common side and a common vertex (corner point) Adjacent angles add up to 180 degrees.)


が、図のaからdまでの角度の合計がa + b + c + d = 360 ° の証明に
adj ∠’s at a point sum to 360 °となってるのをみました。

隣接角は180度までなのに理解できません。それとも”adj ∠’s at a point sum to 360 °”は間違っているのでしょうか?
どなたか説明して頂けますか?

「隣接角について」の質問画像

A 回答 (4件)

up to 180 degrees のほうが間違ってんですよ。


そんな制限は、必要ありません。
試しに、∠AOB = ∠BOC = 120゜ の図を
直線 OA と OC が重ならないように
書いてみてください。
∠AOC の優角が 240゜ になって、
特に問題ないでしょう?
    • good
    • 0
この回答へのお礼

なるほど、何か私は完璧に勘違いしてるんでしょうね。
そんな制限はない、わかりました!
有難うございました。

お礼日時:2011/04/04 14:23

とりあえず 2点ほど:


1. #3 でも言われているように「up to 180 degrees」というのは不要. この図だって, c と d を合わせたら 180度を超えるでしょ?
2. 「隣接角は180度までなのに理解できません」と書いてますが, 何が「理解できない」のですか? 「adj ∠’s at a point sum to 360 °」の「sum」がわからない?
    • good
    • 0
この回答へのお礼

Tacosan様、回答有難うございます。
隣接角を勉強してる時にあるサイトで見たup to 180 degreesというのにものすごくこだわってました。
180度を超えたら隣接角ではないと思っていたので計360度になるこの図には「adj ∠’s at a point sum to 360 °」のadjは使えないと思ってたんです。
有難うございました!

お礼日時:2011/04/04 14:37

下から4行目∠AOB'=b+aの間違いです。

すみません・・
    • good
    • 0
この回答へのお礼

いえいえ、そういう記号などの間違いはこちらですぐわかるので大丈夫です。
説明して頂いた事、ゆっくり読んでみます。
有難うございます!

お礼日時:2011/04/04 10:02

隣接角の定義が2つの直線が交わってできる4つの角のうち隣り合っている角ということなので


例えば角bの下の線を延長、または角aの下の線を延長してみると直線は3本できると思いますが
二つの直線が交わってできる四つの角のうち隣り合う角は
どの2直線で考えてもb+c=180°とa+d=180°になりますので
a+b+c+d=360°といえるのではないでしょうか。

bの下の線を左から(以下同じ)AA',角aの下の線を左に延長したものをBB',角cの下の線をCC',3本の直線が交わる点をOとすると
例えば2直線AA',BB'が交わってできる角は
∠AOB=c-a,∠AOB=b+aになりますので隣接角の一つはc-a+(b+a)=b+c
∠B'OA'=c-a,∠A'OB=a+(d-(c-a))=2a+d-cになりますので隣接角のもうひとつはc-a+2a+d-c=a+d
という感じで他のどの2直線でも(b+c)+(a+d)の合計になります。

まだるっこしい説明ですみません
    • good
    • 0
この回答へのお礼

tomokoich様、回答有難うございます!
説明して頂いたこと、何度かやってみたのですが、まだ完全に理解出来ていません。
ホント、レベルが低くて申し訳ないです(折角説明していただいた事をまだ理解出来ていないので)。
他の回答者が指摘してくれた様に多分私は隣接角について何か勘違いしてるんだと思います。
貴重なお時間を有難うございました。
今回はまだ理解できていないものの、tomokoich様の考え方はいつもとても参考になります。
又よろしくお願い致します。

お礼日時:2011/04/04 16:34

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!