タイトルの通りです。
文系なので今まで数学はあまりしっかりやらなかったのですが、どうしてもやるしかなくなってしまい…OTL

しかし引っ張りだしたIIBのテキストには解法が見当たらず質問いたしました。

詳しくしていただけますと非常に助かります、お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

積分と面積の区別は、理解できていたほうがよいです。


面積を求めるなら求めるで、何の面積を求めるのか自分で解っていないと。

cos(x) の、x が π/2 から -π/2 までの積分を求めたいのであれば、

∫[π/2 → -π/2] cos(x) dx = sin(-π/2) - sin(π/2) = (-1) - (1) = -2
(積分の下限: π/2, 積分の上限: -π/2)

となります。cos(x) の不定積分が sin(x) + (定数) ですからね。
    • good
    • 0
この回答へのお礼

もしかしてプロフィールの方を見て下さったのでしょうか?
丁寧に解説しなおしてくださりありがとうございます!
頑張ります^^

お礼日時:2011/04/27 00:55

cos(x)の-π/2≦x≦π/2の範囲の面積を求めたいのであれば



∫[-π/2→π/2] cos(x) dx=sin(π/2)-sin(-π/2)=1-(-1)=2
(積分の下限:-π/2,積分の上限:π/2)

となります。
    • good
    • 0
この回答へのお礼

ありがとうございました!

お礼日時:2011/04/27 00:53

IIB じゃなく III に書いてあるのでは?


= sin(-π/2) - sin(π/2) です。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q積分公式の記述での使い方

記述式の問題で積分公式(インテグラル無しで面積を求められるやつです)を使っても減点はないでしょうか。


例えば、こんな感じで

積分公式よりS=~



積分公式は教科書に載っていないので、こういう使い方が受験に通じるのか不安です。回答お願いします。

Aベストアンサー

こんばんわ。

確かに「積分公式」ってなんのことでしょうか?
それも「インテグラル無しで面積を求められるやつ」とは・・・?

もしかして、次のような式のことですか?
∫[α→β] (x-α)(x-β) dx= -1/6* (β-α)^3

いずれにしても、
>積分公式よりS=~
といった表現では通用しません。
すでに、ここの質問でも通用していないくらいですから。

単に積分の計算であれば、とくに明記せずに用いてもいいと思います。
この式自体を示せと言われれば、きちんと計算しないといけません。

Q∫log sinx dxや∫log cosx dx のやり方

∫log sinx dxや∫log cosx dxの計算をやっているのですが、置換積分や部分積分をフル活用しているのですが、先が見えません。助けて下さい。

Aベストアンサー

こんにちは。不定積分ではなく定積分でお答え
します。広義積分を習っていることを仮定しますが…
でも、
∫_{x=0~π/2}log (sinx) dx
についてだけです。
まず、上の積分が収束するかという問題があります。
(実際には、絶対収束します。)
この収束を示すことが必要なら補足しますので、
ここでは省きます。
(ヒントは(√x)log(sinx)に対してロピタルの定理を使い、x→+0とします。)

以上のことを頭の隅において積分を計算します。そこで、
I=∫_{x=0~π/2}log (sinx) dx
とおきます。ここで、xをπーxに、又はπ/2-x
と変数変換すると
I=∫_{x=π/2~π}log (sinx) dx
I=∫_{x=0~π/2}log (cosx) dx
となります。これらは、右辺の広義積分が収束して
値がIに等しいことを意味します。一方、
2I=∫_{x=0~π}log (sinx) dx
であり、x=2tとおくと
I=∫_{x=0~π/2}log (sin2t) dt
 =∫_{x=0~π/2}log (2 sint cost) dt
 =∫_{x=0~π/2}log 2 dt+∫_{x=0~π/2}log (sint) dt+∫_{x=0~π/2}log (cost) dt
=π/2*log 2+2I
∴ I=ーπ/2*log 2
となります。ご参考までに。

こんにちは。不定積分ではなく定積分でお答え
します。広義積分を習っていることを仮定しますが…
でも、
∫_{x=0~π/2}log (sinx) dx
についてだけです。
まず、上の積分が収束するかという問題があります。
(実際には、絶対収束します。)
この収束を示すことが必要なら補足しますので、
ここでは省きます。
(ヒントは(√x)log(sinx)に対してロピタルの定理を使い、x→+0とします。)

以上のことを頭の隅において積分を計算します。そこで、
I=∫_{x=0~π/2}log (sinx) dx
とおきます。...続きを読む

Q数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題と

数IIIの積分法なんですが置換積分と部分積分法の公式のどっちを使って問題とくかわかりません。問題のどの部分を見てどちらの公式を使うか教えて下さい。

Aベストアンサー

まず置換積分できるか調べましょう.このためには被積分関数を二つの関数の積と考え,一方の関数が他方の関数の原始関数の関数になっていれば置換積分が使えます.すなわち,被積分関数を f(x)g(x) と表したとき,G'(x)=g(x) である G(x) を用いて f(x)=h(G(x)) となる関数 h(u) が見つかれば
∫f(x)g(x)dx = ∫h(G(x))G'(x)dx = ∫h(u)du
です.例えば
(log 2x)/(x log x^2) = h(log x){log x}'
h(u) = (u + log 2) / 2 u = 1/2 + (log 2)/2u
だから
∫(log 2x)/(x log x^2)dx = (1/2){log x + (log 2)log(log x)} + C
となります.
置換積分がダメそうなら部分積分できるか調べましょう.概してこちらの方が調べるのが面倒です(とくに漸化式を使う場合).

Qcosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 +

cosx = 1/√2 - (1/√2)・(x-π/4) - (1/2√2)・(x-π/4)^2 + {(x-π/4)^3/3!}・sin(θx)  
(0<θ<1)

f(x) = (4/π^2)・{2(x-π/4)(x-π/2)-√2・x(x-π/2)}
このグラフが分かりません…
教えてください!

Aベストアンサー

+ {(x-π/4)^3/3!}・sin(θx) は
+ {(x-π/4)^3/3!}・cos(θ(x-π/4)) ではないかと...違うかな?

で、これは cosx そのものです。θは x の関数なのでそれに惑わされないように。


下のはそれでなく、f(x)=(8/π^2){ (x-π/4)(x-π/2) - √2 x(x-π/2) } が正しいと思います・・・
このグラフは添付した図になります。
かなり近いです。

描き方は、計算機を用意して頂点を数値計算、あとは (0, 1) 、(π/4, 1/√2) 、(π/2, 0) を通るように二次関数のグラフを描けば良いです。
あるいはグラフ描画ソフトの力を借ります。

Q分点座標が±0.5のGauss-Legendre積分公式を知りませんか。

高精度化が必要な数値計算をやっています。
特に、数値積分の高精度化が必要なため、Gauss-Legendre積分公式の使用を考えています。
ただし、解く方程式が積分方程式であるなどの理由からそのままでは使用できません。
使用するためには、Gauss-Legendre積分公式の分点座標が区間の中心である必要があります。
例えば、分点数が2の場合、通常は座標x=±0.57735...重みw=1ですが、これを座標x=±0.5とできるような積分公式はないでしょうか?

Aベストアンサー

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の多項式で近似できるf(x)を扱う場合に旨く行きます。

 さて、ご質問は、おそらく積分範囲 x=-1~1に対してガウス・ルジャンドルの数値積分を使いたいけれど、次数を2にして、分点、すなわちサンプリングする点を±0.5だけにしたい、という注文です。たぶん、±0.5における被積分関数f(x)の値なら簡単に求められる、というのでしょう。
 もちろん、適当な一次式ではない関数g(たとえば3次関数)を用いて
x=g(t)
という変数変換でx=±0.5をt=±0.57.... に移し同時にx=±1をt=±1に移す、ということ自体は簡単です。するとf(g(t))と
dx/dt = g'(t)
の積を被積分関数としてt=-1~1について積分することになります。この場合、被積分関数 f(g(t)) g'(t) がtの2次多項式で近似できるんでないと、2次のガウス・ルジャンドル法を使って精度が出るという保証はありません。
 高精度の数値積分をやりたいと仰っている割に、f(x)が高々低次の多項式で近似してしまえるんだったら、何もガウス・ルジャンドル法に拘る必要はないんで、例えばニュートン・コーツ型の数値積分、すなわち分点を等間隔に取る方法でも十分じゃないの?と思うんですが、どうなんでしょうね。

 或いは分点の数をもっと増やして良い、というのだったら、代わりに例えば-1~-0.5, -0.5~0.5, 0.5~1の3つの区間に分けてそれぞれ積分するのでも良い。被積分関数の傾きが急な部分でサンプリングを細かくしてやるというのも精度が出ますし、その代わりに適当な変数変換をして等間隔サンプリングしたり、ガウス・ルジャンドル法を使ったり…いろんな処方が考えられます。

 ですから、「±0.5」と限定なさる理由をもう少し明確に補足して戴くか、具体的に被積分関数をupして戴かないと、ろくな回答にならないと思います。

ううむ。これだけじゃ回答しようがないと思うなあ。

 ガウス・ルジャンドルの数値積分というのは、f(x)を-1~1の区間で積分するときに、n次ルジャンドル関数の零点にあたるxでf(x)をサンプリングして重み付きの和を取るんでした。無論、積分区間内に特異点があったりしたら使えません。一般に積分範囲が x=a~b である場合には
x=((b-a)t+a+b)/2
と変数変換すれば、t=-1~1のtに関する積分になる。そしてdx/dt = (b-a)/2という因子を掛け算しておけば良いですね。n次のガウス・ルジャンドル法は、高々n次の...続きを読む

Qlim_(x→π/4) (sin x -cosx) / ( x - π/4) の極限値

いつもお世話になっています。
極限値を求める問題2問です。
(1) lim_(x→π/4) (sin x - cos x) / (x - π/4)
 x-π/4 を t と置いて考えてみたのですが、途中から分からなくなり ました。

(2) lim_ (x→1) (x-1)/{^3√(x) -1}
よろしくお願いします。

Aベストアンサー

(1) lim_(x→π/4) (sin x - cos x) / (x - π/4)

(x - π/4)=tとおく。

lim_(t→0) (sin(t+ π/4) - cos(t+ π/4)) /t

lim_(t→0) (1/t)(sin(t)cos( π/4)+cos(t)sin(π/4)
        - cos(t)sin( π/4)+sin(t)cos(π/4))

lim_(t→0) (1/t)((1/√2)sin(t)+(1/√2)sin(t))

lim_(t→0) (1/t)((√2)sin(t))
=√2

Q数学II「微分・積分」で面積を求める公式

6分の1の公式や3分の1の公式みたいに、積分を利用せずに面積を求められる公式って他にありませんか?

Aベストアンサー

(1)や(2)は高校数学のレベルで十分理解できると思います。
これらは,数値積分と呼ばれるもので,近似的に積分(求積)を実現しています。
参考になれば良いのですが。

(1)台形法
(2)シンプソン法
(3)ルンゲ・クッタ法

Q(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dyの成立条件

(d/dx)∫(a~b)f(x,y)dy(つまり、f(x,y)をyで積分(定積分)したものをxで微分したもの)を考えます(ただし、(a~b)は積分範囲を表し、aやbは定数であって、xの関数ではありません)。
これは多くの場合、∫(a~b)(d/dx)f(x,y)dy(つまり、f(x,y)を先にxで微分してからyで積分したもの)と等しくなります。しかし、まれに一致しない場合があります。例としては、f(x,y)=(sin xy)/y (x>0)の場合が挙げられます。
そこで、
(d/dx)∫(a~b)f(x,y)dy=∫(a~b)(d/dx)f(x,y)dy
が成立するための必要十分条件を教えていただきたいと思っています。
もし簡単には述べられない条件でしたら、何のどこを参照すればこのことが論じられているのかを具体的にご教示いただけると幸いです。

Aベストアンサー

積分と微分の順序交換については
必要十分条件は一般にはありません.
ただし,十分条件は知られています.

リーマン積分の範囲だと
f(x,y)が連続で,f_y(x,y)も連続くらいの条件があれば
d/dy∫f(x,y)dx = ∫f_y(x,y)dx
くらいがいえるはずです.
#積分区間とかは省きます.

その十分条件で一番便利だろうと思われるものは
ルベーク積分の言葉で記述されます.
興味があれば,「ルベーク積分」の本を
追いかけてください.
・ルベークの有界収束性定理
・L^1空間
というようなものが理解できれば,順序交換の定理は理解できます.

Q積分の公式の導出について

積分の公式の導出について

∫{(ax+b)^n}dxの積分公式は、(((ax+b)^n+1)/a(n+1))
なのですが、どのようにすれば導出できるのでしょうか?

ご回答よろしくお願い致します。

Aベストアンサー

ax+b=s とおくと ds/dx=a つまり dx=ds/a
従って 与式=∫s^n/a ds
あとは積分してsを元に戻すだけです。

Qlim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

lim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

ということなのですが、区分求積法を使おうとしたのですが、よくわかりません。
複雑ですが、解けた方は教えていただけないでしょうか。

Aベストアンサー

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従って、そのフーリエ係数はn→∞のとき0に収束する。
(リーマン-ルベグの定理を用いた。)よって第二項目の積分は0となる。

よって、lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)=1/2・log(1+π/2)
となる。

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従っ...続きを読む


人気Q&Aランキング

おすすめ情報