最近昔数学で習った内容を勉強し直している者です。連立方程式の消去法についてですが、例えばa+b=1・・・(1),a-b=3・・・(2)のとき(1)と(2)をたして、bを消去すると思いますが、消えたbはどこへ行ってしまうのでしょうか?不思議でなりません。的外れな質問をしているかもしれませんが、どなたか回答いただける方よろしくお願いいたします。

A 回答 (3件)

どこにも消えていません.


(1) と (2) を「足す」ことによって, 新たに 3本目の方程式 2a=4 が「生まれている」のです. (1) と (2) がどこかに消えてしまったわけではなく, 厳然としてそこに存在します. そしてその中に b はいるわけですから, b も「消えてしまった」わけではありません.
    • good
    • 0

まず、2元1次方程式は未知数が2つあります。

このままでは求められません。
しかし、aとbのどちらかが分かれば求められます。
そこで、消去法で1つ未知数を消して1元1次方程式にします。
a+b=1,a-b=3だとaとbの値が分かりませんが、1つ未知数を消して2a=4にすればaの値が求められます。
aの値が分かれば、a+b=1,a-b=3のどちらかにaを代入して解く事が出来ます。
つまり、aを求める為にbを消したのであって、bの存在そのものが消えたわけではありません。
    • good
    • 0

まず bが±で消えて


2a=4
a=2になりますよね

それを 1 もしくわ 2の式に
当てはめて(代入して)

2+b=1
2を移項して
b=-1

答えがa=2
b=-1

なのでbは消えてないです
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q割り算するという行為の意味が未だに分かりません。

現在21歳です。

小学校高学年に割り算を使う文章問題に出会って以来、算数という科目に苦手意識を持ち始め、それによりもちろん数学も不得意科目となりました。

割り算の行為の意味が分からない為、中学・高校の数学の授業を理解する事はほとんど出来ず、例えば「2÷3は2/3(3分の2)というように、分数を使って表す事が出来る」という事を授業で聞いたときは、本当に発狂したくなりそうなぐらい頭を抱える程、割り算の意味が分からずにいました。

こんな状態を打破すべく、最近になってようやく割り算と真剣に向き合いその意味を考える事にしたのですが、やはり根本的には未だ理解に至っておりません。 

割り算とは「1あたりの平均を出す為の行為」という考えに至ったのですが、それであっているのでしょうか? つまり、どんな割り算の問題も「1につき1」という条件が含まれていて、それに従って計算していくものである、という位置づけでよかったでしょうか?

例えば、9個のリンゴを3人で分ける時、もちろん9÷3をして計算します。
問題には書いていないですが、その時の条件は「1人につき1個リンゴを貰う」だと思います。仮に1人が2つ貰ってしまっては、計算が破綻し9÷3=3にはならなくなってしまいますから。 9÷3というのは、(その3人をそれぞれABCとした場合)
ABC|ABC|ABC の図の様に、9を(「ABC」をひとまとまりとして)3つに分ける行為で、その1まとまり=1人1個となりそれが3つあるから1人につき3個になるのだと思います。

他の例として、「リンゴ1つを4人で分けた時、1人当たりもらえるリンゴの数は?」という質問を取り上げてみます。

本来ならばリンゴを4つ用意して4人で分けたら1回区切る事ができ、1人1つ貰えるのですが、今回は1つを4人で区切らなければなりません。

そこで計算として、1÷4=0.25で答えが1人あたり0.25個となる訳です。

以上のことから判断して、割り算という行為は1あたりの平均を出す為のものである、となったのですが合っているでしょうか?

本当に割り算という行為が分かりません。

この割り算というものをきっちりと理解できたら、また数学の参考書等を用いて色々な文章問題を解いて行きたいと思っているのですが。。。

回答お待ちしております。

(あと本当に算数が苦手な小学生にも分かる、分かりやすい参考書等がありましたら加えて教えて頂けたらと思います)

現在21歳です。

小学校高学年に割り算を使う文章問題に出会って以来、算数という科目に苦手意識を持ち始め、それによりもちろん数学も不得意科目となりました。

割り算の行為の意味が分からない為、中学・高校の数学の授業を理解する事はほとんど出来ず、例えば「2÷3は2/3(3分の2)というように、分数を使って表す事が出来る」という事を授業で聞いたときは、本当に発狂したくなりそうなぐらい頭を抱える程、割り算の意味が分からずにいました。

こんな状態を打破すべく、最近になってようやく割り算...続きを読む

Aベストアンサー

算数や数学等の学問は最初は毎日の生活の必要に応じて発展してきているのだと考えられます。
複数の物を複数の人に分ける場合等のやり方は、割り算等を知らない子供でも親がやっているのを見て自然に理解していると思います。だから難しく考えないでも良いのではないでしょうか。

最初は整数/整数で割り切れる場合、
次は、整数/整数で余りが出る場合、
次は、整数/整数で少数1桁迄で割り切れる場合、
次は、整数/整数で少数2桁迄で割り切れる場合、

等の演習問題を多数計算してみて下さい。
そのように計算している内に自然と感じが掴めて来るのではと思われます。

次には分数ですが、リンゴやスイカ等を分ける時に丸ごと数個ずつ皆に分ける事が出来れば良いのですが、そうでない時は包丁等で切って分けますよね。

1個を2人で分けた場合は、一人当り1/2=0.5となりますよね。
このような事が個数や人数が多くなった場合、7個を5人に分けると1人当り7/5=(5+2)/5=1+2/5=1.4個、
5kgの米を3人で分ける場合、5/3=1.333kg/1人
等と多少ややこしくなってきますが。
(分りきった説明ですみません)

例題や演習問題等はサーチ条件を工夫してみて調べてみると、親切なサイト等が多数見つかります。

算数 割り算 解説
算数 割り算 説明
算数 割り算 解説 OR 説明 OR 初歩 OR 入門 OR 初めての
算数 割り算 割り切れる場合 例題 問題 答
算数 割り算 余り
算数 割り算 小数
算数 分数 説明 OR 入門 例題 問題
      (他に基本、基礎、勉強法、練習問題、演習問題、文章問題.....)  
算数 割り算 解説 OR 説明 割り切れる場合
==>
http://www.rakugakukobo.com/sansuu/sandojyo/sando_1/sd1_07_h3_12.htm
算数道場==>
1・数と計算…かけ算とわり算・速く正確に
2_かけ算とわり算・目次

このサイトには使えそうな例題や練習問題がありそうですね。
あるサイトで色々な情報がありそうな時は、より上位のウインドウやリンク等を辿ってみて下さい。
またサイト内サーチ機能を使ってみて下さい。

サイト内の検索窓でサーチ、それが無ければ次のようにサイト指定で検索する事が出来ます。
割り算 小数点 site:rakugakukobo.com
割り算 小数点 site:http://www.rakugakukobo.com/sansuu

その他、次等も参考になるかと思います。

http://okwave.jp/qa/q5633812.html
計算に関する疑問 (小学レベルーー)

http://oshiete.goo.ne.jp/qa/5653918.html
中学レベルから大学受験までの道のり

http://oshiete.goo.ne.jp/qa/6829640.html
物理を勉強したいのですが・・・

算数や数学等の学問は最初は毎日の生活の必要に応じて発展してきているのだと考えられます。
複数の物を複数の人に分ける場合等のやり方は、割り算等を知らない子供でも親がやっているのを見て自然に理解していると思います。だから難しく考えないでも良いのではないでしょうか。

最初は整数/整数で割り切れる場合、
次は、整数/整数で余りが出る場合、
次は、整数/整数で少数1桁迄で割り切れる場合、
次は、整数/整数で少数2桁迄で割り切れる場合、

等の演習問題を多数計算してみて下さい。
そのように計算して...続きを読む


人気Q&Aランキング

おすすめ情報