「夫を成功」へ導く妻の秘訣 座談会

 運動方程式の微分積分の計算方法がわかりません。詳しく教えてもらえると嬉しいです。よろしく、お願いします。以下はテキストの抜粋です。

m・dv/dt = F(r)
両辺に速度 v=dr/dt をかけると
mv・dv/dt = F(r)・dr/dt
となる。ここで、
v・dv/dt = d/dt(1/2v^2)  ← この式変形が、分かりません。1/2も不明です。
と変形できるので、上の式は
d/dt [1/2 mv^2(t)] = F・dr(t)/dt

このQ&Aに関連する最新のQ&A

A 回答 (3件)

積の微分の公式


(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)
をつかっているだけです。

v^2=v・v
v'=dv/dt

です。

d/dt(v^2)=(v^2)'=(v・v)'=v'v+vv'=2vv'=2v・dv/dt

だから、

v・dv/dt=1/2・d/dt(v^2)=d/dt(1/2v^2)

でしよう。
    • good
    • 4
この回答へのお礼

詳しい解説、ありがとう、ございます。 勉強する気力が沸いてきました。 

お礼日時:2011/08/14 16:34

右辺→左辺の変形は積の微分なり合成関数の微分の公式を使えば簡単に導けます。



慣れれば左辺を見ただけで右辺に変形出来るようになるのですが(この手の変形は良く出てくるのでそのうちなれる)、どうしても左辺から右辺を導きたい場合は左辺の式を一度時間で積分してみると良い。

∫(v*dv/dt)dt=∫vdv  (置換積分)
=v^2/2+C

この両辺を時間で微分すると
v*dv/dt=d/dt(v^2/2)
となります。
    • good
    • 1
この回答へのお礼

ご教授、ありがとう、ございます。 これを励みに、これからも精進していこうと思います。

お礼日時:2011/08/14 16:35

d/dt(1/2v^2) は微分の積の公式



d(ab)/dt = da/dt * b + a * db/dt

から

1/2 * (dv/dt * v + v * dv/dt) = v * dv/dt
    • good
    • 0
この回答へのお礼

すばやい対応、ありがとう、ございます。 また1つ理解を深めることが、できました。

お礼日時:2011/08/14 16:36

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q微分のdx/dtというような表記の仕方がいまいち良くわかりません

記号の意味そのものは良くわかるのですが…
そのdx/dtに掛けたり割ったりする感覚が良くわかりません。
dy/dt×dt/dx=dy/dxのような?感じです
また、高次導関数をd^ny/dx^nと表記する仕組みも良くわかりません。
なぜ分数で言う分子の位置ではdに指数がついているのに分母の位置にではxに指数が付いているのか…まったくの謎です。
数学が苦手なので基礎的な部分から教えてください

Aベストアンサー

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変化に対するyの変化の割合
 = (y(a+1)-y(a))/(a+1 - a)
 = ((a+1)^2 - a^2)/(a+1 - a)
 = 2a + 1


では、xの変化をさらに1つ減らした場合を考えます。
それは、xをaからaに変化させるということです。
aがいかなる値であっても、y=x^2のグラフには、たしかに傾きがありますが、
傾きというのは、変化の割合と同じです。
ですから、答えがあるはずです。
そこで、上記と同じく、x=a における変化の割合を求めるとすると、どうなるかと言えば、
(y(a)-y(a))/(a-a) = 0/0 (=不定)
という、わけのわからない結果となってしまいます。
しかし、グラフの傾きも、変化の割合も存在するはずです。

そこで、非常に小さい変化量を、dをつけた記号で表すことを考えます。

xの変化は、 a → a+dx
yの変化は、 y(a) → y(a+dx)

xの変化量は、dx ( = a+dx - a)
yの変化量は、dy = y(a+dx) - y(a)
です。


x=aにおける、xの変化に対するyの変化の割合
 =(y(a+dx)-y(a))/(a+dx - a)
 = ((a+dx)^2 - a^2)/(a+dx - a)
 = (2adx + (dx)^2 )/dx
とすることができます。

分子に(dx)^2 がありますが、
dx自体が非常に小さい量ですので、(dx)^2 は、全く無視してよい量となります。
よって、
x=aにおける、xの変化に対するyの変化の割合
 = (2adx + (dx)^2 )/dx
 = 2adx/dx
 = 2a
となります。

これで、x=a のときの dy/dx は、 2a と表せることがわかりました。

ということは、いかなるxの値についても、
dy/dx = 2x
であるということです。

以上のことで、
・x^2 を微分したら 2x になること
・dy/dx は、xの変化に対するyの変化の割合
の意味がおわかりになったと思います。


そして、
たとえば、y、t、x の3変数があって、
ある地点において、
tの変化量のxの変化量に対する割合が4で、
yの変化量のtの変化量に対する割合が3だとしましょう。
すると、xが1変化するのに対してyは12変化します。
dt/dx = 4
dy/dt = 3
dy/dx = 12 = 3 × 4 = dy/dt・dt/dx


なお、
高次導関数の表記については、単なる約束事だと思っておけばよいです。
素直に書けば、
1回微分は、dy/dx
2回微分は、d(dy/dx)/dx
3回微分は、d(d(dy/dx)/dx)/dx
ということになりますが、これでは見にくいので。


以上、ご参考になりましたら幸いです。

こんばんは。

dy/dx は、ある瞬間(xの微小変化)における、
xの変化量に対するyの変化量の割合です。

たとえば、y = x^2 という関数のグラフを例に取りますと、


xがaからa+2に変化するときの、xの変化に対するyの変化の割合
 = (y(a+2)-y(a))/(a+2 - a)
 = ((a+2)^2 - a^2)/(a+2 - a)
 = (4a + 4)/2
 = 2a + 2


xの変化の幅を1つ減らせば、

xがaからa+1に変化するときの、xの変...続きを読む

Q加速度 a=dv/dt = (d^2 x) /dt^2

加速度 a=dv/dt = (d^2 x) /(dt^2)
という公式があったのですが、(d^2 x) /(dt^2)はどうやって出せばよいのでしょうか?
dv/dt のvに
v=dx/dt
を代入すると
a=(d^2 x) /(d^2 t^2)
になってしまいます。
計算がまちがっているのでしょうか?

Aベストアンサー

微分でわからなくなったら差にして考えてみてください。

速度vというのは、Δtを十分に小さい量として

v(t) = [ x(t+Δt)-x(t) ]/[ (t+Δt)-t ] = Δx(t)/Δt

ですね。同じようにして加速度a(t)は

a(t) = [ v(t+Δt)-v(t) ]/[ (t+Δt)-t ] = Δv(t)/Δt

ですが、v(t)に上の結果を使うと

a(t) = Δv(t)/Δt = Δ[Δx(t)/Δt]/Δt = Δ[Δx(t)]/(Δt)^2

です。

微分というのはΔt→0の極限を取ったときにΔをdと書くという
約束になっているというだけのことなので、

a=dv/dt = (d^2 x) /(dt^2)

は間違いで、本当は

a=dv/dt = (d^2 x) /(dt)^2

という意味です。

また、

a=(d^2 x) /(d^2 t^2)

も間違いです。こう書いてしまうと分母はΔ(Δt^2)という意味になってしまいます。

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q微積分 dの意味

∫f(x)dxやdx/dtなどとよく使われるdの意味がよくわからなくなってしまいました。例えば∫f(x)dxの場合
は『関数f(x)をxで積分する』で、dx/dtは『x(関数)をtで微分』という意味はわかるのですが、dにはもっと深い意味があるような気がするのです。数学の授業でdx/dtを先生はdxとdtでばらして使ったりしています。本当にそんなことが可能なのでしょうか。先生はdの意味をよく教えてくれないのです。お願いだから誰が教えてください。

Aベストアンサー

微分とは限りなく小さい範囲のものを考えていく関数の為、
とてつもなく小さいxの範囲の場合はΔx(デルタx)、時間tのとてつもなく小さい範囲はΔtと記載します。

それらを関数の中ではデルタの頭文字dを使い、dxやdtと表しているのです。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q積分計算のdtとdxの違いがわかりません。

積分計算のdtとdxの違いがわかりません。
おはようございます。今日もよろしくお願いします。

積分の式を立てて、よく書き忘れてしまい、
前の問題の分も今、dtを書き足していたのですが、
問題集の解答を見てみると、dxになってました。
もしかして、自分がずっと間違えて覚えていたのでしょうか?
それとも、どっちでもいいのでしょうか?
何か決まりがあってdxや、dtに変わるのでしょうか?
教えてください

Aベストアンサー

まぁ、他回答にもありますが、

dtはtについて積分しろ!

dxはxについて積分しろ!

って事だけです。問題を解くときに、何について積分するのか考えて解きましょう。
決まりです。決めてあるだけです。嫌なら、解答の冒頭で「dtを”積分するのはtについてです”と表記する。」としても、本当は正解のはずです。
頭の悪い教師なら×にしますが。

でも、dtの方が楽ですよね。だから、dtという表記が普及したんのです。世界各地で、積分については色んな表記があったと記憶しています。当然日本でも微積分は発明されました。日本では当然、日本語表記です。

でも∫とd(多分definiteの略)だけで、表すのが一番シンプルで分かりやすいからこれが普及したんじゃないですかね。∫の上と下に積分範囲を書くという直感的に分かりやすい記法ですし。

ほんとは、数学なんて解ければいいんですよ。でも、今使われている数学の表記は長年の歴史で洗練されているから使いやすいのはお墨付きって事です。後、自己流の表記を導入すると論文書くときにいちいちその表記の定義を説明しなくちゃならなくて、読む方も読みづらいと思う。下手するとそこで落とされるんじゃんじゃないですかね。数学の論文は書いたことないから分からないけど。

これからも、色んな疑問を投げかけて数学を好きになってください。

まぁ、他回答にもありますが、

dtはtについて積分しろ!

dxはxについて積分しろ!

って事だけです。問題を解くときに、何について積分するのか考えて解きましょう。
決まりです。決めてあるだけです。嫌なら、解答の冒頭で「dtを”積分するのはtについてです”と表記する。」としても、本当は正解のはずです。
頭の悪い教師なら×にしますが。

でも、dtの方が楽ですよね。だから、dtという表記が普及したんのです。世界各地で、積分については色んな表記があったと記憶しています。当然日本でも微積分は発明され...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q2階微分d^2y/dx^2を詳しく教えてください

微分=傾き=tanθ=dy/dxと言うのは入門書でなんとかわかったのですが
2階微分=傾きの変化率(傾きの傾き)=d^2y/dx^2
のこのd^2y/dx^2がなぜこうなるのかぜんぜんわかりません。
dy/dxがどう変化してd^2y/dx^2となるのか教えてください。
いろいろ本やネットで調べましたが傾き=tanθ=dy/dxまでは入門書でも
詳しく書かれているのですがd^2y/dx^2へはどの解説でもいきなり飛んでいってしまいます。

Aベストアンサー

表記の仕方ですか?
dy/dxは 
yをxで微分するということです
2階微分はdy/dxをさらにxで微分するということです
dy/dxのyのところをdy/dxにおきかえれば
d(dy/dx)/dx=d^2y/dx^2
見た目ではdが2回掛かっているからd^2
dxの部分も2回掛かっているのでdx^2なんですが
dを1つの変数とみたり、dxを1つの変数と見てたりして分かりにくいかもしれません
これはそう決めたからなんです
ある程度覚えるしかないです

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q加速度を積分すると速度・・・

加速度aを時間tで積分すると速度が出てきて、その速度vを時間tで積分すると位置が出てきますよね。
そのときの初期条件の設定の仕方はがわかりません。
詳しく教えてください。

Aベストアンサー

加速度aを時間tで積分すると積分定数が出てきますよね。それが初速度となります。
次に速度vを時間tで積分すると、また積分定数が出てきます。それが基準点である位置となります。

例えば、ある物体が時刻t=0(s)のときの加速度a=6(m/s^2)、初速度v=10(m/s)、位置x=1(m)の状態のとき時刻tにおける速度、位置を求めよ、という問題があったとします。

vはaを時間tで積分してv=6t+C(Cは積分定数です)となります。
このときのCが初速度10となります。
なので時刻tにおける物体の速度vはv=6t+10(m/s)となります。

次にさきほど求めたvを時間tで積分して、時刻tにおける物体の位置を求めます。
v=6t+10を時間tで積分するとx=3t^2+10t+C’(C’は積分定数です)となります。
このときのC’が物体がはじめにあった位置1となります。
なので時刻tにおける物体の位置xはx=3t^2+10t+1(m)となります。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング