
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
公務員試験でも、整数問題が流行なのか。
大学入試問題なら、基本的レベルの問題なんだが。求める自然数をNとし、mとnを整数とすると、N=6m+5=5n+4 とあらわせれる。
よって、6m+1=5n となるが、これを満たす一つの例(=特別解)は、(m、n)=(4、5)だから、6*(m-4)=5*(n-5)と変形できる。
5と6は互いに素だからkを整数として、m-4=5k、n-5=6k。よって、N=6m+5=5n+4=30k+29.
10≦N≦99だから、10≦30k+29≦99、kは整数だからk=0、1、2。
(1) k=0の時、N=30k+29=29.
(2) k=1の時、N=30k+29=59.
(3) k=2の時、N=30k+29=89.
以上から、求める個数は 3.
No.6
- 回答日時:
もし問題が「6で割ると0余り、5で割ると0余る数のうち、2桁の自然数の個数を求めよ。
」でしたら簡単に分かりますよね。6と5の最小公倍数30の倍数の個数を数えれば求められます。
この問題が「6で割ると1余り、5で割ると1余る数のうち、2桁の自然数の個数を求めよ。」になったらどうでしょうか。
これも余りの数が同じなので最小公倍数30の倍数に1加えた数の個数を数えれば求められます。
では問題が「6で割ると-1余り、5で割ると-1余る数のうち、2桁の自然数の個数を求めよ。」になったらどうでしょうかこれも余りの数が同じなので最小公倍数30の倍数から1引いた数の個数を数えれば求められますが、実はご質問の問題はこれと同じ問題なのです。
6で割ると5余る数は、商を1大きくすると余りは-1になります。同様に5で割ると4余る数は、商を1大きくすると余りは-1になります。
ご質問の問題は割る数を変えると余りが異なっているように見えますが、実はいずれの余りも割る数との差が1ですので割る数が6でも5でも同じ余り-1になっています。
このことを利用して、(6と5の最小公倍数)-1が2桁の自然数の中にある個数を勘定すればよいことが分かります。
No.5
- 回答日時:
6で割ると5あまる数の一般項は6m-1。
ただしm≧1。5で割ると4あまる数の一般項は5n-1。ただしn≧1。
6で割ると5あまり、かつ、5で割ると4あまる、という条件から、
6m-1=5n-1 … (1)
∴6m=5n … (2)
6と5は互いに素(最大公約数が1)であるため、
(2)の条件を満たすのは5×6=30の倍数。
∴(1)の条件を満たすのは、(30の倍数-1)
このうち、2桁という条件を満たすのは、29、59、89の3個。
No.4
- 回答日時:
6で割ると5余る数,5で割ると4余る数 を列挙してみると
5で割る方が、14,19,24,29,34,39,……と規則性があるので、
6で割る方を探します。
11,17,23,29,……というように,まず29が見つかります。
このような感じで探すと、29,59,89 の3つです。
地道な方法ですが、そんなに時間はかかりません。
No.3
- 回答日時:
「6で割ると5余り」の数は、どのように表すか。
難しいことはおいて、条件に合う自然数は、29,59,89の3個
自然数 Mod(自然数、6) Mod(自然数、5)
10 4 0
11 5 1
12 0 2
13 1 3
14 2 4
15 3 0
16 4 1
17 5 2
18 0 3
19 1 4
20 2 0
21 3 1
22 4 2
23 5 3
24 0 4
25 1 0
26 2 1
27 3 2
28 4 3
29 5 4
300 0
311 1
322 2
333 3
344 4
355 0
360 1
371 2
382 3
393 4
404 0
415 1
420 2
431 3
442 4
453 0
464 1
475 2
480 3
4914
5020
5131
5242
5353
5404
5510
5621
5732
5843
5954
6000
6111
6222
6333
6444
6550
6601
6712
6823
6934
7040
7151
7202
7313
7424
7530
7641
7752
7803
7914
8020
8131
8242
8353
8404
8510
8621
8732
8843
8954
9000
9111
9222
9333
9444
9550
9601
9712
9823
9934
No.2
- 回答日時:
「6で割ると5余り、5で割ると4余る」という問題なので,30以下の自然数について書き出すのが早い。
6で割ると5余る数は,5,11,17,23,29です。このうち,5で割ると4余る数は29です。
2桁の数,すなわち10~99の間ですから,29,59,89の3つです。
No.1
- 回答日時:
6で割ると5余る数は6n+5と表せる。
求めるの2桁の自然数なので
6n+5<100
したがってn=<15
6n+5を5で割るのだから、少し変形する。
6n+5
=(5+1)n+5
=5n+5+n
=5(n+1)+n
第1項は5で割り切れるので、第2項のnを5で割ったあまりが4になるものを選べばよい。
n=<15なので
求めるnは
4、9、14の3個
ついでに題意を満たす2桁の自然数を計算すると
29、59、89
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
この余りが1、余りが3という...
-
0から9までの数字を使ってでき...
-
大きな数の因数分解
-
小学校4年生の算数の教科書で...
-
これの求め方を教えて下さい!...
-
中3の数学の問題
-
5桁の自然数nにおいて、万の位...
-
順列、組み合わせの問題です。 ...
-
小学生への割り算の答えの確か...
-
1 から 9 までの数字を使って引...
-
解き方を教えてください。 中3...
-
順列 組合せの問題
-
読んで割っても6で割っても3余...
-
整数問題
-
問題 整式X³+X²-2X+1を整式B...
-
数学の質問です。 nを整数とす...
-
負の余りはあり得ますか?
-
7^50を6で割った余り。高校数学
-
教えて下さい!
-
小学算数の問題です
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
この余りが1、余りが3という...
-
190分はなん時間何分ですか?
-
これの求め方を教えて下さい!...
-
2は5で割り切れません。 あまり...
-
0から9までの数字を使ってでき...
-
負の余りはあり得ますか?
-
小学校4年生の算数の教科書で...
-
1から9の数字を書いたカードが...
-
1 から 9 までの数字を使って引...
-
数的処理(数学 場合の数)の問題...
-
解き方を教えてください。 中3...
-
順列、組み合わせの問題です。 ...
-
2^nを3で割った余り
-
小学4年生の算数問題です。どう...
-
ある整数を7ではると、商が10で...
-
高1数学Aの問題で、 「a、bは整...
-
[0はまたは正の整数とする。
-
12で割っても、15で割っても8余...
-
商と余りが同じ整数
-
解いてください
おすすめ情報