
A 回答 (6件)
- 最新から表示
- 回答順に表示
No.6
- 回答日時:
ノートをスキャンしたのをアップしたのですが、どうにも見にくいので、文字で打ったものを再度出します。
ご参考になれば幸いです。1)。 {(√3-i)/2}^50
Z1=(√3)/2 – 1/2*i とおく。
Z1の絶対値 r1=| Z1|=√{[(√3)/2]}^2 + [– 1/2]^2} = |1|=1である。
よって、Z1=(√3)/2 – 1/2*i = 1*{(√3)/2 – 1/2*i }となる。
-π<θ1(偏角1) =<πとおくと、
1*cosθ1=(√3)/2よりcosθ1=(√3)/2 --- (1)
1*sinθ1=-1/2よりsinθ1=-1/2 となる。--- (2)
(1)と(2)を同時に満たすθ1は-1/6*πであるから、θ1=arg Z1=-1/6*πとなる。
よって、Z1=(√3)/2 – 1/2*i = 1*(cos[-1/6π]+ i*sin[-1/6π])である。
ここで、{(√3)/2 – 1/2* i}^50= Z1^50であるから、ド・モアブルの定理を使うと、
=1^50*{ cos[-1/6π*50]+i*sin[-1/6π*50]}
-50/6π= -8π-2/6π=(-2π)*4-1/3πであるから、-π<θ=<πの範囲に直すと、
=1*{ cos[-π/3]+i*sin[-π/3]}となる。
よって、{(√3–i)/2}^50を極形式で表すと、1*{ cos[-π/3]+i*sin[-π/3]}である。
なお、これをオイラーの公式を使って更に簡単にすると
1*{ cos[-π/3]+i*sin[-π/3]}=1*e^i*(-π/3)= e^-iπ/3となる。
2)。 3i
3i = 0+3i = Z2とおく。Z2の絶対値 r2=| Z2|=√(0^2 + 3^2)= √(0+9)=|3|=3
よって、Z2=0+3i = 3(0+1*i)となる。
-π<θ2(偏角2) =<πとおくと、
cosθ2 = 0 --- (1), sinθ2 = 1--- (2) となる。
(1)と(2)を同時に満たすθ2はπ/2であるから、θ2=arg Z2=π/2となる。
よって、3iを極形式で表すと、3i=3*(cosπ/2+isinπ/2)となる。
なお、これをオイラーの公式を使って更に簡単にすると、
3*(cosπ/2+isinπ/2)=3e^iπ/2となる。
3)。 (1+i)^100
Z3=1+i=1+1*iとおく。
Z3の絶対値r3=| Z3|=√(1^2 + 1^2)= √2
√2 * cosθ3 = 1--- (1), √2 * sinθ3 = 1--- (2) となる。
-π<θ3(偏角3) =<πとおくと、
(1)と(2)を同時に満たすθ3はπ/4であるから、θ3=arg Z3=π/4となる。
よって、Z3=1+1*i=√2(1/√2 + i*1/√2)= √2(cosπ/4+isinπ/4)となる。
(1+i)^100= (Z3)^100であるから、ド・モアブルの定理を使うと、
(√2)^100{ cos[π/4*100]+isin[π/4*100]} =2^50{ cos25π+isin25π}
25π=2π*12+π=πであるから、-π<θ=<πの範囲に直すと、2^50{ cosπ+isinπ}。
よって、(1+i)^100を極形式で表すと、2^50{ cosπ+isinπ}になる。
なお、これをオイラーの公式を使って更に簡単にすると、2^50*e^iπとなる。
4)。 (1+i/√3)^n + (1-i/√3)^n (n∈N)
[1] Z4=1+i/√3 = 1+(1/√3)*iとおく。
Z4の絶対値r4=| Z4|=√{1^2+(1/√3)^2}=2/√3
-π<θ4(偏角4) =<πとおくと、
2/√3* cosθ4 = 1 よってcosθ4=√3/2 --- (a)
2/√3* sinθ4 = 1/√3よってsinθ4=1/2 --- (b) となる。
(a)と(b)を同時に満たすθ4はπ/6であるから、θ4=arg Z4=π/6となる。
すなわち、Z4=2/√3*(cosπ/6+isinπ/6) --- (1)
[2] Z5=1-i/√3 = 1-(1/√3)*iとおく。
Z5の絶対値r5=| Z5|=√{1^2+(-1/√3)^2}=2/√3
-π<θ5(偏角5) =<πとおくと、
2/√3* cosθ5 = 1 よってcosθ5=(√3)/2 --- (c)
2/√3* sinθ5 = -1/√3よってsinθ5=-1/2 --- (d) となる。
(c)と(d)を同時に満たすθ5は-π/6であるから、θ5=arg Z5=-π/6となる。
すなわち、Z5=2/√3*(cos[-π/6]+isin[-π/6]) --- (2)
[3] (1), (2)より(1+i/√3)^n+(1-i/√3)^n=(Z4)^n+(Z5)^n
ド・モアブルの定理を使うと、
=(2/√3)^n{ cos[(π/6)*n]+isin[(π/6)*n] } + (2/√3)^n{ cos[(-π/6)*n]+isin[(-π/6)*n]} --(3)
=[(2√3)/3]^n{ cos[(π/6)*n]+ cos[(-π/6)*n] + i[sin{(π/6)*n} + sin{(-π/6)*n}] }
=[(2√3)/3]^n{ cos[(π/6)*n]+ cos[(π/6)*n] + i[sin{(π/6)*n} - sin{(π/6)*n}] }
=[(2√3)/3]^n{ 2cos(nπ/6)+i*0}=[(2√3)/3]^n*2cos(nπ/6)
よって、(1+i/√3)^n+(1-i/√3)^nを極形式で表すと、[(2√3)/3]^n*2cos(nπ/6)となる。
もしくは、(3)の状態から、オイラーの公式を使って簡単にすると、
=[(2√3)/3]^n(e^i nπ/6+e^-nπ/6)= [(2√3)/3]^n * e^i* (e^nπ/6+e^-nπ/6)
よって、(1+i/√3)^n+(1-i/√3)^nを極形式で表すと、
[(2√3)/3]^n * e^i* (e^nπ/6+e^-nπ/6)となる。
No.1
- 回答日時:
極形式とは
z=re^(iΘ)
の形で表された複素数のこととします。
Θは書きにくいので以下、tで表します。πも同じ理由によりpで表します。
1)。 {(√3-i)/2}^50
=(cos(p/6)-isin(p/6))^50=e^(-pi/6)^50=e^(-25pi/3)
(r=1, t=-25p/3)
2)。 3i=3e^(pi/2)
3)。 (1+i)^100
=[√2(1/√2+i/√2)]^100=2^50[cos(p/4)+isin(p/4)]^100=2^50e^(100pi/4)=2^50e^25pi
4)。 (1+i/√3)^n + (1-i/√3)^n
1+i/√3=(2/√3)(√3/2+i/2)=(2/√3)(cos(p/6)+isin(p/6))=(2/√3)e^(pi/6)
1-i/√3=(2/√3)e^(-pi/6)
(1+i/√3)^n + (1-i/√3)^n=[(2/√3)e^(pi/6)]^n+[(2/√3)e^(-pi/6)]^n
=(2/√3)^n[e^(npi/6)+e^(-npi/6)]=(2/√3)^n[2cos(np/6)]
(r=(2/√3)^n[2cos(np/6)],t=0:実数)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
∫[0→∞] 1/(x^3+1)dx
-
積分計算(定積分)
-
1/(sinx+cosx)の積分
-
重積分です Rは斜線部を示しま...
-
1 / (x^2+1)^(3/2)の積分について
-
1/5+4cosxの0→2πまでの積分で、...
-
曲線の長さ
-
高3数学
-
{cos(-2/3π)+i sin(-2/3π)}^2...
-
cosx<0(0≦x≦2π)の範囲を教えて...
-
lim[n→∞]∫[0,π/2]{sin^2(nx)}/(...
-
大学数学
-
cosπ/2やcos0ってどのように求...
-
次の平面、曲面で囲まれた部分...
-
∫∫【0,π/2】×【0,π】sin(x+y)d...
-
cos^4θの定積分
-
画像より、 n≧-1の時、 a(n)=(1...
-
∫_{0}^{π/4}dx/{sin²x+3cos²x}...
-
積分問題
-
高校の数学についてです。 写真...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
cosπ/2やcos0ってどのように求...
-
1 / (x^2+1)^(3/2)の積分について
-
1/(sinx+cosx)の積分
-
重積分について
-
位相がよく分かりません。 cos(...
-
1/5+4cosxの0→2πまでの積分で、...
-
y=cosx(0≦x≦π/2)のy軸周りの回...
-
複素数のn乗根が解けません
-
cos π/8 の求め方
-
数3の極限について教えてくださ...
-
数学の証明問題です。
-
複素数の偏角
-
レムニスケート
-
次の値を求めよ。(どうしてそ...
-
∮ [0→1] arctanx dx の定積分を...
-
積分計算(定積分)
-
∫∫【0,π/2】×【0,π】sin(x+y)d...
-
区間[0,1]で連続な関数f(x)に...
-
画像より、 n≧-1の時、 a(n)=(1...
-
数2の三角関数のグラフについて...
おすすめ情報