A,B、C、D、Eの5人が卓球のリーグ戦を行ったところ、次の結果になった。
ア 優勝した者と最下位の者の勝ち数の差は2つであった
イ A、B、Cは同率(勝ち負けが同じ)であった
ウ 引き分けの試合はなかった
エ DはBにしか勝てなかった
オ AはEに勝った
解説
優勝と最下位の勝ち数の差が2つであり、引き分けはなかったということは、5人でのリーグ戦(総当たりで10試合)では、下記のとおり、優勝が3勝1敗、最下位が1勝3敗ということである。よって、同率のA,B,Cは2勝2敗ということになる。DはBにしか勝てなかったのだから最下位で、優勝はEとなる
この解説についてですが、どうしてEが1位と判明するんでしょうか
表を書いても途中までしか埋まりません
ABCが同率首位でEがその次に来るとは考えてはいけないのでしょうか
A 回答 (5件)
- 最新から表示
- 回答順に表示
No.5
- 回答日時:
簡単な表を書いてみましょう。
エ DはBにしか勝てなかった Dの勝った相手は (1)B Dは1勝3敗
→Dの負けた相手はACE これで1勝3敗で最下位。
オ AはEに勝った この時点で Aの勝った相手は (2)DとEで Aは2勝2敗
つまりAはBとCに負けている。 cの勝った相手は (3)AとDで Cは2勝2敗
次に同じくBの勝った相手は (4)AとCで Bは2勝2敗
(1)から(4)までの間で Eは一回しか出てきません。
このことから EはAには負けているけど BCDに勝っているので 3勝1敗になる。
No.4
- 回答日時:
もう少し計算で攻めた方が納得しやすいかもしれませんね。
そこで、以下のような考え方を。
A~Cは p勝 q敗、Eは s勝 t敗だったとします。
(Bは問題から、1勝 4敗で確定してます)
リーグ戦の表に書かれる勝ち負け(○と×)の数は、
引き分けがないので同じ数(10個ずつ)になります。
ということは、
・勝ち数について、3p+ 1+ s= 10 すなわち 3p+ s= 9となります。
0≦ p≦ 4、0≦ s≦ 4で満たす組を考えると、(p, s)= (2, 3), (3, 0)になります。
・同様に、負け数についても考えます。
さらに、p+ q= 4、s+ t= 4も満たさなければなりません。
・上の条件を満たすものは 2組求められますが、
勝ち数の差の条件から最終的に A~C、Eの勝ち負け数が確定します。
No.3
- 回答日時:
>ABCが同率首位でEがその次に来るとは考えてはいけないのでしょうか
正しくないです。
A、B、Cが3人とも3勝1敗だとすると、3人で9勝3敗。
残り2人で1勝7敗ですから、その2人は1勝3敗か0勝4敗。
優勝が3勝1敗で最下位が0勝4敗だとすると、条件アを満たしません。
No.2
- 回答日時:
エとオの条件からAは少なくともDとEに勝利したことが確定する。
また、エからDはBに勝利したこと、CとEはDに勝利したことも確定する。
またイよりBとAの勝率が等しいのでBも最低2勝したことが確定する。
ということは1勝もできなかった者はいないわけだから最下位はDで1勝3敗となる。
仮にAが優勝したと考えるとAは3勝1敗となり残ったBまたはCに勝ったことになるがそうであればBまたはCが3勝することができなくなり、イの条件を満たすことができない。したがってAの勝敗は2勝2敗となりB,Cも同様の勝敗数となる。
No.1
- 回答日時:
5人のリーグ戦で引き分けがなかったので、
5人の勝敗を合計すると10勝10敗である。
条件アより、4勝0敗の者と0勝4敗の者が存在することはない。
よって、優勝者は3勝1敗、最下位は1勝3敗である。
この2人の勝敗合計は4勝4敗である。残り3人で6勝6敗。
条件イより、A、B、Cが2勝2敗で同率であることがわかる。
D、Eのいずれかが3勝1敗でいずれかが1勝3敗。
条件エより、Dが1勝3敗である。
よって、優勝したのは3勝1敗のEである。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- サッカー・フットサル グループリーグ1位通過国と2位通過国では、次戦の勝率が結構違いますか? ワールドカップ 2 2022/11/26 05:25
- 野球 セ・リーグの今年の3位争いはどうなる? 5 2022/09/26 07:05
- 数学 A,B,Cの3高校が野球の試合をする。まず2校が対戦して 勝ったほうが残りの1枚と対戦する。 これを 2 2022/09/16 20:58
- 統計学 数学の確率問題 1 2022/10/24 00:15
- 野球 プロ野球阪神 2 2023/08/13 17:45
- サッカー・フットサル 「日本を倒してくれ!」とスペインに頼むとか、ドイツも落ちたものだ 2 2022/11/28 20:29
- 囲碁・将棋 将棋のスーパーカップはやらんの? 2 2023/06/27 21:54
- 野球 プロ野球の話 1 2022/07/24 00:39
- 統計学 この問題良く分からなくて分かる方解説お願いします。 ある有名ラーメン店の待ち時間 X (分) を調べ 5 2022/07/20 09:57
- 野球 プロ野球の話 1 2022/11/29 15:53
このQ&Aを見た人はこんなQ&Aも見ています
-
好きな人を振り向かせるためにしたこと
大好きな人と会話のきっかけを少しでも作りたい、意識してもらいたい…! 振り向かせるためにどんなことをしたことがありますか?
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
【お題】マッチョ習字
【大喜利】 「精神を鍛えるため」にと、ジムから書初めの宿題を出されたマッチョたちが半紙に書いてきたこと
-
何歳が一番楽しかった?
自分の人生を振り返ったとき、何歳のころが一番楽しかったですか? 子供の頃でしょうか、それとも大人になってからでしょうか。
-
我が家のお雑煮スタイル、教えて下さい
我が家のお雑煮スタイル、教えて下さい! (お汁)味噌汁系? すまし汁系? (お餅)角餅? 丸餅? / プレーンなお餅? あんこ餅?
-
A〜Eの5人がテニスのリーグ戦を行った。全員がそれぞれと1回ずつ対戦したところ、引き分けの試合はなか
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
関数等式の問題です。
-
相続税55%所得税55%なら、合わ...
-
数学1の質問です。 三角形ABCに...
-
添付した画像の上記のコメント...
-
8人の人がいて、どの2人も仲が...
-
数学から見たメビウスの輪
-
問2なのですが、黄色い線から青...
-
小学1年生とか2年生に、「1+1っ...
-
「0⁰再び」について
-
数学の問題です。 9時と10時の...
-
xを含む割り算
-
境界条件u(0、t)=0、u(2、t)=0 初...
-
熱伝導拡散方程式で ∂u/∂t=k∂^2...
-
a2^+2ab+4b2^が(a+b)2^+3b2^に...
-
三次関数y=f(x)では、f'(x)=0の...
-
平均値の出し方を教えてくださ...
-
日本の税金、1億人×1円=1億円...
-
線型代数_1次変換の行列表示に...
-
exp(x)の微分が
-
定積分 ∫[-1√2→1/√2] {x^2/√(1-...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
勝率(%)の出し方
-
場合の数、確率 49 (東大文系過...
-
勝率をはじき出したい
-
A〜Eの5人がテニスのリーグ戦を...
-
エクセルでリーグ戦の表を…
-
勝率の求め方を教えてください...
-
数Aの集合の要素の個数と、場合...
-
解説でわからないところがあります
-
チェスってもう人類がコンピュ...
-
夏目漱石の草枕の冒頭の文章の意味
-
チェスについて教えてください
-
聞くは一瞬の恥、知らぬは一生...
-
オセロのパーフェクトゲームの...
-
将棋とチェス、どっちが好きで...
-
オセロについて 僕はオセロクエ...
-
オセロの兎定石のローズを終局...
-
オセロの勝ち方を教えて下さい
-
オセロのコツ
-
オセロが強くなりたいです。 私...
-
いとこの2つ年下の女子とオセ...
おすすめ情報