ママのスキンケアのお悩みにおすすめアイテム

大学一年です。
共鳴構造の判断の仕方がわからないので質問します。

大学の先生から頂いたプリント(ボルハルトショアーの問題の解答が載っているもののコピー)には、以下のように書いてありました。

ALWAYS TRUE

3. Second-row atoms (i.e., up through neon) can never exceed an octet in their valence shell in any resonance form.

「第二周期の原子はどんな共鳴構造式においても8電子則を満たす。」ということだと思うのですが、教科書(ボルハルトショアー現代有機化学上)には、これに矛盾するような共鳴構造式が書いてありました。(下の画像)
これはどういうことなのでしょうか?

また、例えば、BrCNの共鳴構造式は(紙面上では)描くことができます。
[:::Br-C≡N: ⇔︎+::Br=C=N::-]
しかし実際には共鳴構造は存在しないそうです。
教科書には、共鳴構造式の描き方しか載っていないので、ある化合物が共鳴構造を持つかどうかの判断の仕方を教えてください。

「共鳴構造について」の質問画像

このQ&Aに関連する最新のQ&A

A 回答 (1件)

>「第二周期の原子はどんな共鳴構造式においても8電子則を満たす。

」ということだと思うのですが、
違います。8電子を超えないという意味です。つまり、8以下であればよいというだけで、6でもかまいません。

>しかし実際には共鳴構造は存在しないそうです。
あなたの担当教員が間違えているのか、あなたが誤解しているのかわかりませんが、それは違います。
そもそも、共鳴構造はその物質の構造や性質を説明するためのものであり、存在するとかしないとか言う類いのものではありません。つまり、考える過程において、出来るだけ多くの共鳴構造を考えた上で、その構造の寄与の大きさを考慮し、取捨選択するようなものです。
したがって、+::Br=C=N::-の共鳴構造を考えてもかまいません。ただし、それを重要でないと考えるのであれば、取捨選択の結果として排除することはあるでしょう。
個々の共鳴構造が重要であるかどうかの判断基準に関しては教科書に書いてあるはずです。Brの場合に右の構造を排除する理屈があるとするならば、電気陰性度の大きいBr上に正電荷が来ているということなのかもしれませんけど、共鳴構造式を書くのであれば、寄与が小さかろうとも、この構造は当然書くべきものだと思いますよ。
もちろん、一般的に、構造の表記には単一の構造式を用いるのが普通ですので、その場合には左の構造に準ずる式を書くべきです。
    • good
    • 0
この回答へのお礼

納得しました。
ありがとうございます。

お礼日時:2014/04/22 08:09

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q共鳴構造式の書き方って?

有機化学を大学で習っているのですが、いきなり最初の方で躓いてしまいました><
教科書に「巻矢印表記法を用いて、化合物の構造に寄与する共鳴構造式を書け」という問題があるのですがさっぱりわかりません。参考書等を調べてみてもさっぱりわからないので…どうか教えてください><

Aベストアンサー

巻矢印が電子対の移動を表しているということはわかりますか?
また、分子や原子の電子配置はわかりますか?つまり、Lewis構造式を正しくかけますか?

これらがわかっていなければ、共鳴構造式は書けません。逆にこれらがわかっているのであれば、教科書等の例を、その電子配置を考えながら、丁寧に見ていけば理解出来るはずです。

なお、原子の電荷を考える場合には、共有されている電子は共有している原子で等分し、孤立電子対は、それを有する原子のみに属すると考えて、その電子数を、その原子本来の電子数と比較することによって決定します。
上述の電子数が、その原子の本来の電子数よりも多ければ負電荷をもつことになり、少なければ正電荷をもつことになります。

また、共鳴構造式を考えるときには、炭素以外の原子から考え、炭素以外の原子において、ほとんどの場合、本来の結合数(酸素なら2、窒素なら3、ハロゲンならI)よりも、1本多い結合を作っていれば+、1本少ない結合を作っていればーの電荷をもつことになります。これは、上述の電子配置のことがわかっていれば明らかですけどね。

まあ、細かなノウハウはありますが、それは経験的に身につけることですね。

巻矢印が電子対の移動を表しているということはわかりますか?
また、分子や原子の電子配置はわかりますか?つまり、Lewis構造式を正しくかけますか?

これらがわかっていなければ、共鳴構造式は書けません。逆にこれらがわかっているのであれば、教科書等の例を、その電子配置を考えながら、丁寧に見ていけば理解出来るはずです。

なお、原子の電荷を考える場合には、共有されている電子は共有している原子で等分し、孤立電子対は、それを有する原子のみに属すると考えて、その電子数を、その原子本来の電...続きを読む

Q寄与が大きい・小さい

共鳴構造のところででてくる
「寄与が大きい」「寄与が小さい」という言葉。
自分なりに、それぞれを
「なりやすい」「なりにくい」という言葉で
理解したんですが、これって正しいですか?

もっと「寄与が大きい・小さい」を説明する
わかりやすい言葉があれば
教えてください。

Aベストアンサー

極限構造のパーセンテージだと思って下さい。
ベンゼンの二つの構造は等価なので同じ大きさの寄与。
他の形のベンゼン(デュワーベンゼンなど)の構造は無理があるので小さい寄与。
てな処です。

Qσ結合、π結合、sp3混成???

こんにちわ。今、有機化学の勉強をしているのですが、よくわからないことがでてきてしまったので質問させていただきます。なお、この分野には疎いものなので、初歩的なことかもしれませんがよろしくおねがいします。

題名の通りで、σ結合、π結合、混成軌道とはどういう意味なのですか??手元にある資料を読んだのですが、全くわからなかったので、どなたかお教えいただければ幸いです

Aベストアンサー

σはsに対応しています。sとsの結合でなくともsとp他の結合でも良いのですが、対称性で、「結合に関与する(原子)軌道が(分子軌道でも良い)結合軸に関して回転対称である」つまり結合軸の周りにどの様な角度回しても変化のない結合です。
πはpから来たもので、結合が「結合に関与する軌道(同上)が結合を含む面内に『一つ』の節を持ち結合軸上に電子密度のないもの」を指します。当然sは使えませんpかdかから作ります。
混成軌道:例えばs1p3の軌道があったときこれらからsp+2×p、sp2+p、sp3のいずれの組み合わせを(数学的に)作っても、どれもが四つの「直交した」軌道になります。
この様に「典型的な」表現から他の数学的に等価な(直交した)はじめの軌道数と同数の軌道を作り出したものです。
もっぱら化学結合の立体特異性を説明するのに使われます。
ライナス・ポーリング先生達が考え出したもののようです。

Q結合性軌道と反結合性軌道とは?

結合性軌道と反結合性軌道とはどういうものなのでしょうか?
調べてみたのですが少し専門的で理解できませんでした。
初心者にも分かる程度にご教授お願いいたします。

また、「水素の分子軌道において、基底状態では反結合性軌道に電子が含まれない」ということも合わせて教えていただけるとうれしいです。

Aベストアンサー

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2つの原子核を引き寄せ結合を生成しますから、「結合性軌道」と呼ばれます。
しかしエネルギーの高い方の軌道では、2つの軌道の電子波は位相を逆向きにして重なるのです。
すると、重なった部分の電子密度は低くなり、2つの原子間とは反対方向の電子密度が高くなります。
結果、この軌道はそれぞれの原子を結合とは逆向きに引き離し、結合を破壊する性質を持つので「反結合性軌道」と呼ばれます。

水素分子H2では、このように2つの1s軌道から結合性軌道・反結合性軌道ができます。
電子は合わせて2つです。パウリの原理に従い、エネルギーの低い軌道から電子を詰めていくと、2つの原子はどちらも結合性軌道に位置します。
反結合性軌道には電子は入っていません。

結合次数は (結合性軌道中の電子 + 反結合性軌道中の電子)/2 で求められます。水素分子の結合次数は1となります。
水素分子の結合は単結合である、ということに一致していますね。

分子軌道法はこのように考えます。

分子の化学結合理論で、分子軌道法という理論の中で使われます。
文だけで分かりづらいと思うので画像をご覧ください。

まず、簡単に水素原子2つから水素分子1つができる過程を考えます。
それぞれの水素は1s軌道に電子を1つずつ持っています。
この2つの1s軌道は相互作用し、エネルギーの異なる2つの軌道ができます。
このときエネルギーの低い方の軌道は、2つの軌道の電子波の位相(波動関数の符号)を合わせて重なります。
すると重なった部分(2つの原子間)の電子密度が高くなり、この軌道の電子は2...続きを読む

Q電子軌道のエネルギー準位

電子軌道のエネルギー準位は内に行くほど低くなる、と書いてあるのですがエネルギー準位とは何ですか?

また、電子がエネルギー準位の低いところから埋まっていく理由も教えてください。

Aベストアンサー

例えば次のURLを参考にされてはいかがでしょう。

http://hyper-chemistry.blog.so-net.ne.jp/2011-03-02

Qアルカンのモノハロゲン化

アルカンのモノハロゲン化

「(R)-3-methylhexaneをモノ塩素化して生成する異性体の構造式の数を求めよ」
という問題について質問させて下さい。

モノ塩素化することによって塩素が、
両端の炭素に結合した水素と置き換わる場合:2通り
2~5番の炭素に結合した水素と置き換わる場合(紙面手前と奥の場合を考慮):7通り
メチル基の水素と置き換わる場合:1通り
よって異性体の数は10……だと考えたのですが、答えは「11」とありました。

なにかが足りないのか、根本的に考え方が間違っているのか、ご指摘お願いします。
(モノハロゲン化の反応機構について解説頂けると幸いです)

Aベストアンサー

そもそも立体異性体(特にエナンチオマー)をどう判断するかについて説明してくべきだと思います。解答からすればすべて区別するということのようですけど。

で、あなたの考え方はでたらめです。不斉炭素の概念を理解していないのでしょうか。それがわからなければ説明不能です。また、反応機構はラジカル連鎖反応ですが、今回の解答にはほとんど関係ありません。それに関しては有機化学の教科書などに書かれているはずです。不斉炭素とはどのようなものか、また、ジアステレオマーやエナンチオマーを正しく理解しているか確認することが先決です。

一応、炭素鎖への番号の付け方は理解しているものとして説明します。1番と6番の炭素はメチル基ですので塩素と置き換わればCH2Clになり、これは不斉炭素ではありません。また、3位の置換基のメチル基に関しても同様です。したがってこれらの炭素への置換の仕方は、それぞれ1通りしかありません。
それに対して、2、4、5位に関しては水素が1個塩素で置き換わることによって不斉炭素が生じます。そうすればR配置とS配置がありますのでそれぞれ2通りの生成物(立体異性体)を生じます。3位に関しては元々不斉炭素ですが、水素が塩素で置換されるときにラセミ化が起こります(この部分のみが反応機構と関係があると言えなくもないですが)ので、R配置とS配置の2通りが考えられます。
これらを合計すれば11通りになります。

そもそも立体異性体(特にエナンチオマー)をどう判断するかについて説明してくべきだと思います。解答からすればすべて区別するということのようですけど。

で、あなたの考え方はでたらめです。不斉炭素の概念を理解していないのでしょうか。それがわからなければ説明不能です。また、反応機構はラジカル連鎖反応ですが、今回の解答にはほとんど関係ありません。それに関しては有機化学の教科書などに書かれているはずです。不斉炭素とはどのようなものか、また、ジアステレオマーやエナンチオマーを正しく理解...続きを読む

Qp軌道の「+」「-」とは?

大学の有機化学の授業で電子の分子軌道について習ったんですが、その教科書にあるp軌道の図で「+」と「-」とかかれていたりします。
これは何を表しているのでしょうか??
教えて下さい。

Aベストアンサー

p軌道(の波動関数の図、電子雲の図)に示された「+」「-」は、波動関数の正負を示しているものです。
結合性軌道・反結合性軌道のお話と関連してはいますが、結合性軌道、反結合性軌道そのものを表す符号ではありませんからご注意ください。

量子力学では「波動関数」という概念が出てきます。これは古典力学には存在しない概念なのでとっつきにくいものではありますが、ψ(x,y,z)という波動関数があったなら絶対値の2乗、すなわち|ψ(x,y,z)|^2がその場所(x,y,z)での粒子の存在確率を示す、と解釈されています。|ψ(x,y,z)|^2は存在確率ですから負の値にはなりませんが、ψ(x,y,z)自体は負の値を取ることも許されます*1。
p軌道とはそのような波動関数のうち、原子の周辺に広がっているもの(の一つ)です。下の図はp軌道を模式的に書いたもので、中心の原子核から電子雲が上下に伸びています。電子雲が「濃い」場所は波動関数が大きな絶対値を持ち電子の存在確率が高い場所です。より詳細な図は教科書で見て下さい。
図には+や-の記号が入っていますが、上側に伸びている部分では波動関数は正の値を、下側の部分では負の値を取ることを表現しています。ただ正であっても負であっても、絶対値さえ大であれば|ψ(x,y,z)|^2が大きいことになりますから、その場所では電子雲は濃く電子の存在確率は高いということになります。

▽+
●原子核
▲-
p軌道の模式図

さて次に原子の結合を考えます。この部分をまた一から説明するとなるとここでは書き切れませんが、結論だけ書くと「プラスの部分同士、マイナスの部分同士が重なる時に結合する」ということになります。下の図をご覧下さい。
結合まで考えると波動関数の正負が重要になってくるわけです。

▽+ ▽+
●   ●
▲- ▲-
結合する(結合性軌道)

▽+ ▼-
●   ●
▲- △+
結合しない(反結合性軌道)

お答えになりましたでしょうか。

*1 Schroedinger方程式は線形方程式ですから、ψ(x,y,z)がその解であればCψ(x,y,z)もまた解となり得ます(Cは定数。負であってもよい)。ただし規格化の要請、すなわち|ψ(x,y,z)|^2を全空間にわたって積分した時に1になるように、との条件がありますからCの絶対値は1つに限られます。
ただ絶対値は決まったとしても、exp(iα)だけの不定性は残ります(iは虚数単位、αはある実数定数。ご存じかと思いますがexp(x)とはeのx乗のことです)。ψ(x,y,z)が(規格化までされた)解であるなら、exp(iα)×ψ(x,y,z)もまた規格化された解になる、ということです。exp(iπ)=-1、exp(0)=1ですから波動関数が正か負かというのは絶対的に定まっているものではなく、実は相対的なものです。(この話はちょっと難しいので無理に理解しなくても結構です)

p軌道(の波動関数の図、電子雲の図)に示された「+」「-」は、波動関数の正負を示しているものです。
結合性軌道・反結合性軌道のお話と関連してはいますが、結合性軌道、反結合性軌道そのものを表す符号ではありませんからご注意ください。

量子力学では「波動関数」という概念が出てきます。これは古典力学には存在しない概念なのでとっつきにくいものではありますが、ψ(x,y,z)という波動関数があったなら絶対値の2乗、すなわち|ψ(x,y,z)|^2がその場所(x,y,z)での粒子の存在確率を示す、と解釈されています。...続きを読む

QSn1反応とSn2反応の違い

Sn1反応およびSn2反応になる条件について調べています。調べたところ両者には以下のような条件の違いがありました。

*Sn1反応*
[中間体]・・・・・3級>2級>1級>メチル
[反応条件]・・・・中性~酸性
[試薬の求核性]・・重要でない

*Sn2反応*
[中間体]・・・・・メチル>1級>2級>3級
[反応条件]・・・・中性~塩基性
[試薬の求核性]・・重要

中間体による違いは、カルボカチオンの超共役効果や立体障害に依存するのだと思います。しかし反応条件や試薬の求核性がどのようにSn1反応とSn2反応に関係するのかが分かりません。例えば、「なぜSn1反応は中性~酸性条件で進行するのか」といったようなことです。どなたか教えてください。

Aベストアンサー

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,どちらの反応の律速段階の反応速度が速いかで決ります。律速段階の反応速度が速い方の機構を通って反応が進行するわけです。

 さて,Sn1 反応の律速段階は御存知の様にカルボカチオンが生じる段階です。つまり,カルボカチオンができ易い程 Sn1 反応は速くなります。一方,Sn2 反応では反応中心の炭素が5つの結合を持った状態が遷移状態ですので,この状態ができ易いもの程反応が速くなります。

 まず,お書きの『中間体』についてです。カルボカチオンの安定性が「3級>2級>1級>メチル」の順であるのは御存知ですよね。これは付いているアルキル基の電子供与性効果と超共役による安定化がこの順で大きいからです。逆にこの順で立体障害が大きくなり,求核剤の接近は困難になります。つまり,「3級>2級>1級>メチル」の順で Sn1 反応の速度は速くなり,Sn2 反応の速度は遅くなります。結果,反応機構が Sn1 → Sn2 にシフトします。

 次に,『試薬の求核性』です。上記した様に Sn1 反応の律速段階はカルボカチオンができる段階であり,求核試薬はこの段階には関与しません。そのため,試薬の求核性は Sn1 反応にはあまり影響しません(重要でない)。一方,Sn2 反応では遷移状態の形成に求核試薬が関与しますので,遷移状態が出来やすい(試薬の求核性が高い)程反応は速くなります(試薬の求核性が重要)。結果,試薬の求核性が高い程 Sn2 反応で進行しやすくなります。

 最後に問題の『反応条件』です。何度も繰り返しになりますが,Sn1 反応の律速段階はカルボカチオンが出来る段階です。この過程では脱離基が抜けてカルボカチオンが生じると同時に,脱離基はアニオンになります。結果,このアニオンを安定化する条件(つまり,酸性もしくは中性)の方が Sn1 反応が進みやすくなります。逆に Sn2 反応は,求核試薬が剥出しの状態になる塩基性の方が攻撃性が高まり反応が速くなります(塩基でもある求核試薬を酸性条件下に置くと酸と反応してしまいます)。結果,塩基性から酸性になるに連れて,反応機構は Sn2 → Sn1 にシフトします。

 ざっとこんな感じですが,要点だけ纏めると,「カルボカチオンができ易い,脱離基が脱離し易い」条件は Sn1 に有利ですし,「アニオンができ易い,求核試薬が攻撃し易い」条件は Sn2 反応に有利です。そして,「求核置換反応の機構は Sn1 か Sn2 のどちらか」ですので,反応が起こらない場合は別にして,Sn1 反応が起こり難くなると Sn2 機構で,Sn2 反応が起こり難くなると Sn1 機構で反応が起こります。

 既にある回答と一部重複するかもしれませんが,全く新たな回答として書かせていただきます。

 まず最初に,求核置換反応(Sn 反応)の機構は Sn1 か Sn2 かのどちらかしかありません。時に「Sn1 と Sn2 の中間の機構」とか「Sn1 と Sn2 が混ざった機構」と言われる事がありますが,これは Sn1 と Sn2 並行して起こっているという事(ある分子は Sn1 反応をし,別の分子は Sn2 反応をしているという状態)であって,個々の分子を見ればどちらか一方です。

 結果,Sn1 反応になるか Sn2 反応になるかは,...続きを読む

Q共役or非共役の見分け方

有機化学や高分子化学の勉強をしているのですが、どういうものが共役で、どういうものが非共役のものなのか、いまいち確信をもって見分けることができません。
なんとなく電子がぐるぐる動いていて、二重結合の位置が常に変わっている(共鳴している?)もののことを共役系と言っている気はするのですが、具体的にどんな形をしたものとか、どんな構造が含まれていたら共鳴していると言うのかがよくわからないでいます。
非常に基礎的なところでつまずいてしまい、なかなか先に進めなくて困っていますので、ぜひご回答よろしくお願い致します。

Aベストアンサー

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同士がくっついてしまって、あたかも二重結合を形成しているかのようになってるんです。
このようにして、炭素4つのp軌道が全部くっついているので、電子は自由に行き来できるのです(非局在化と言います)。共役物質が安定なのはこのためです。

少し踏み込んだ説明をしましたが、わかって頂けましたでしょうか…?

参考URL:http://www.ci.noda.sut.ac.jp:1804/classroom/1998_6_18/Q&A6_18_4.html

共役しているものの代表は、1,3-ブタジエン
H2C=CH-CH=CH2
(単結合と二重結合が交互に存在)です。
二重結合をしている炭素では、隣り合う炭素の上下に伸びているp軌道同士がくっついています(sp2混成軌道はご存じですか?参考URLの図のC1とC2、C3とC4の青い軌道はくっついて1つになっています)。
通常、単結合をしている炭素(sp3混成軌道)には上下に伸びているp軌道はありません。
ところが、共役をしていると、左から2番目のp軌道と3番目のp軌道が近接しているために、単結合であるにも関わらずp軌道同...続きを読む

Q安定性が第三級>第二級>第一級になるのは何故?

学校の課題で、安定性がこのようになるのは何故なのか説明しなければいけないのですが、教科書(「パイン有機化学I」p202)を読んでもよくわかりません。

超共役や誘起効果が関わると思うのですが、それをどのように理解したら「第三級>第二級>第一級」と安定性が説明できるんでしょうか??

わかりやすいHPなどでも結構です。
急ですが、明日中にお願いします。

Aベストアンサー

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴においては、単結合が切れたような構造は考えませんが、超共役というのは、C-H結合の切れた構造を含む共鳴のようなものと考えればわかりやすいと思います。
図はパインの教科書にも書かれていると思いますが、C-H結合が切れた構造においては、形式的に、その結合に使われていた電子対が、正電荷を持っていた炭素原子に移動して、その正電荷を中和しています。その結果、正電荷は、切れたC-H結合を有していた炭素上に移動します。このことは、共鳴の考え方によれば、超共役によって、正電荷が分散した(非局在化した)ということになり、安定化要因になります。

要するに、超共役というのは、単結合の切れたような構造を含む共鳴のようなものであり、その構造がカルボカチオンの正電荷を非局在化させ、安定化に寄与するということです。正電荷を持つ炭素に結合しているアルキル基の数が多いほど、上述の超共役が起こりやすくなり、カルボカチオンが安定化されるということです。

カルボカチオンの安定性の話ですね。
単純化すれば、アルキル基が電子供与性の誘起効果を示すために、それが正電荷を持つ炭素に多く結合しているほどカルボカチオンの正電荷を中和されるために、安定化されるということです。
そのために、アルキル基の数が多いほどカルボカチオンが安定であり、それを言い換えると「カルボカチオンの安定性は、第三級>第二級>第一級である」ということになるわけです。

アルキル基が電子供与性を示す理由として用いられるのが超共役の考え方です。
すなわち、通常の共鳴...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング