確率変数の和の問題です。

2つの確率変数XとYが、互いに独立に一様分布に従うとするとき、
確率変数X+Yはどのような分布の形状になるのでしょうか?

結局、和も一様分布になるのでしょうか?分からなくなってしまいました。
教えて下さい。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

連続型でピンとこないなら、離散型で考えてみれば?例えばサイコロを1個振るでしょ。

1から6に一様(離散なので一様的)に出るね。2回振って和を取ると、平均3.5*2=7だけど2から12が一様的には出ないよね。
元問題を正確に解くと、確率変数X,Yの確率密度関数をf(x),g(y)として。確率変数Z=X+Yの確率密度関数をh(z)とすると。
h(z)=∫[-∞,∞]f(z-y)g(y)dy または h(z)=∫[-∞,∞]f(x)g(z-x)dx を計算すればよい。
問題よりf(x)=1 (0≦x≦1),g(y)=1 (0≦y≦1) なので 0≦z≦1のときyは0≦y≦z,1<z≦2のときz-1≦y≦1の範囲をとる。
0≦z≦1 のとき h(z)=∫[0,z]f(z-y)g(y)dy=∫[0,z]1・1dy=z
1<z≦2 のとき h(z)=∫[z-1,1]f(z-y)g(y)dy=∫[z-1,1]1・1dy=1-(z-1)=2-z
    • good
    • 1
この回答へのお礼

返事が遅くなりました、すいません。
丁寧なご返答、ありがとうございました。

だいぶ理解が進みました。
またよろしくお願いします。

お礼日時:2014/09/02 18:13

確率変数X+Yは、XY平面で考えると理解しやすいかと思います。



例えば、確率変数Xが0~1の範囲に一様に分布し、確率変数Yも、0~1の範囲に一様に分布しているとしましょう。
ここで、XとYが独立ならば、(X,Y)は、XY平面で、0<X<1, 0<Y<1 の範囲に一様に分布します。

X+Yの分布は、上記の領域と、直線 X+Y=K を考えます。
この直線が領域にかかる線分の長さが、確率に比例します。
Kは0~2の範囲をとり、K=1 のときに確率が最大となります。
これをグラフにしてみると、Kの確率密度関数は、(0,0), (1,1), (2,0) を結ぶ折れ線になります。
(確率密度関数なので、この三角形の面積は1です。)

因みに、0~1の間で乱数を2回発生させ、これらを加えた数が、丁度この分布になります。
    • good
    • 0
この回答へのお礼

御丁寧にありがとうございます、まだ充分理解できないのでもう少し考えてみます。

お礼日時:2014/08/17 22:14

確率密度関数が2等辺3角形の形状になる

    • good
    • 0
この回答へのお礼

ありがとうございます。
形状は分かりましたが原理がイマイチ分かっておりません。
もう少し勉強してみます。

お礼日時:2014/08/17 22:13

互いに独立なら一様です。

    • good
    • 0
この回答へのお礼

ありがとうございます。
もう少し考えてみます。

お礼日時:2014/08/17 22:12

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q畳み込み積分をする和の密度関数の問題に困ってます。。。

畳み込み積分をする和の密度関数の問題に困ってます。。。
aを正の定数とする。実数値をとる確率変数X、Yが独立に密度関数
f(x)=ae^(-ax)(x≧0),0(x<0),
g(y)=(a+1)e^(-(a+1)y)(y≧0),0(y<0),
に従うとき、その和の密度関数U=X+Yを求めよ
という問題です。。。
畳み込みの公式にいれてみたのですが、最後まで計算ができない(eが発散してしまいました)

お願いします

Aベストアンサー

ポイントは:
      x≧0
 かつ y=u-x≧0 ,
よってxの積分領域は[0,u] です。

これ以上書くと余計かもしれませんが,結果を計算したのでご参考ください。

別解は,逆フーリエ変換を用いるもので,指数分布の場合,zの積分領域を心配する必要がありません。

私はこれから日本で数理統計を学びたい準留学生です。一緒に頑張りましょう。

Q2つの正規分布を合成したらどうなるのでしょうか?

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

もしμ3=μ1+μ2,σ3=σ1+σ2のように平均も分散も和で考えてよいのなら

f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}

が答えだと思っているのですが、それとは別のやり方で



f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。

しかし、僕の数学の知識ではこれができなくて困っています。ガウス積分の公式を使ったりしなければいけないのではないかとも考えいるのですが行き詰っています。

アドバイスよろしくお願いいたします。

現在大学の研究の過程で統計学を学ぶ必要がでてきました。僕自身は統計学に詳しくはないので知識のある方の回答は非常に助かります。
どうかご教授よろしくおねがいします。


平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが



例えば互いに独立で

国語の平均点、分散を(μ1,σ1)としての正規分布f(国語)
数学の平均点、分散を(μ2,σ2)としての正規分布f(数学)

とした時の国語と数学の合計得点の分布f(国語+数学)はどのように表せばよいのでしょうか?

...続きを読む

Aベストアンサー

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z の平均と「分散」をμ3, (σ3)^2 とすると・・・

μ3 = μ1 + μ2
は、X, Y がどのような分布であっても(X, Y が異なる分布であっても)成立しますし、X, Y が互いに独立であるか否かに関わらず成立します。
また、X, Y が互いに独立であれば(それらの分布によらず)、
(σ3)^2 = (σ1)^2 + (σ2)^2
が成立します。(このとき Z = X + Y の「標準偏差」σ3 は、σ3 = √( (σ1)^2 + (σ2)^2 ) )

> f(国語+数学)=1/((√2π)σ3) exp-{((x-μ3)^2)/2σ3^2}
> が答えだと思っているのですが
X, Y が互いに独立な確率変数であり、共に正規分布に従うならば、X + Y もまた正規分布に従うという事実は確かにありますが、これは正規分布の「再生性」と呼ばれる特別な性質であることを理解していなければなりません。その点、大丈夫ですか?

> それとは別のやり方で
> f(国語)=1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}と
> f(数学)=1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}をたたみこみ積分すれば答えがでるのではないかと考えています。
上述したように、正規分布の再生性を示す必要があるならば、畳み込み積分でそれを示すのが一法なのであって、何も「別のやり方」ではありません。
案ずるより計算するが易しです。式の整理が面倒なだけで、特別な知識は不要です。
f(x) = 1/((√2π)σ1) exp-{((x-μ1)^2)/2σ1^2}
g(x) = 1/((√2π)σ2) exp-{((x-μ2)^2)/2σ2^2}
h(x) = ∫f(t) g(x - t) dt
  = 1/(2πσ1 σ2) ∫exp{ - (t - μ1)^2 / (2σ1^2) - (x - t - μ2)^2 / (2σ2^2) } dt
  epx( ) の指数部を t で平方完成して
  = 1/(2πσ1 σ2) ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2)) - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } dt
  = 1/(2πσ1 σ2) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) } ∫exp{ - (t - 何ちゃら )^2 / (2σ1^2 σ2^2 / (σ1^2 + σ2^2))} dt
  = 1/√(2π(σ1^2 + σ2^2)) exp{ - (x - μ1 - μ2)^2 / 2 (σ1^2 + σ^2) }
  (∵ ∫ exp ( - (t - A)^2 / 2B^2 ) dt = √(2π) B )
μ3 = μ1 + μ2, σ3^2 = σ1^2 + σ2^2 とおけば
h(x) = 1/(√(2π) σ3) exp( - (x - μ3)^2 / 2 σ3^2 )
途中、「何ちゃら」の部分は省略してますので、興味があれば追っかけてみてください。

なお、本件は確率論において、ごくごく基本的な事項です。
もし、これから確率統計を使って研究をされるのならば、このような件を簡単に質問して済ませるのは危うい感じがします。ちゃんと書籍を読まれ、その上で質問されるのが宜しいでしょう。

> 平均μ、分散σで表される正規分布はf(x)=1/((√2π)σ) exp-{((x-μ)^2)/2σ^2}で表されますが
一般的には分散をσ^2と表し、標準偏差はその平方根でσと表します。
質問者さんが示された確率密度関数は、平均 μ、分散 「σ^2 」の正規分布のものです。分散と標準偏差の扱いをもう少しきちんとしましょう。

> μ3=μ1+μ2, σ3=σ1+σ2のように平均も分散も和で考えてよいのなら
2つの確率変数 X, Y があり、それぞれの平均と「分散」がμ1, (σ1)^2, μ2, (σ2)^2 であるとします。確率変数 Z を Z = X + Y で定め、Z ...続きを読む

Q確率密度関数の問題教えてください

同時確率密度関数6(x-y) 0<x<y<1 のX,Yそれぞれについて周辺確率密度関数と期待値と分散を求め、共分散と相関係数を求めよ。


Xの期待値がゼロになったり、Yの期待値がマイナスの値になってしまったのですが、良いのでしょうか?

Aベストアンサー

同時確率密度関数 f(x,y)=6(x-y) 0<y<x<1 とします。
(1)周辺確率密度関数は
 f1(x)=∫[0,x] 6(x-y)dy=3x^2 ,0<x<1
 f2(y)=∫[y,1] 6(x-y)dx=3(1-y)^2 ,0<y<1
(2)E(x),Sxx
 xm=E[x]=∫[0,1] xf・1(x)dx=∫[0,1] 3x^3=3/4
 E[x^2]=∫[0,1] x^2・f1(x)dx=∫[0,1] 3x^4=3/5
 Sxx=E((x-xm)^2]=E[x^2]-xm^2=3/5-(3/4)^2=3/80
(3)E(y),Syy
 ym=E[y]=∫[0,1] y・f2(y)dy=∫[0,1] 3y(1-y)^2=1/4
 E[y^2]=∫[0,1] y^2・f2(y)dy=∫[0,1] 3y^2(1-y)^2=1/10
 Syy=E((y-ym)^2]=E[y^2]-ym^2=1/10-(1/4)^2=3/80
(4)Cov(x,y)=Sxy
 E[xy]=∫[0,1]∫[0,x] xy・f(x,y)dydx=∫[0,1]∫[0,x] 6xy(x-y)dydx=1/5
 Sxy=E[xy]-mxmy=1/5-3/4・1/4=1/80

同時確率密度関数 f(x,y)=6(x-y) 0<y<x<1 とします。
(1)周辺確率密度関数は
 f1(x)=∫[0,x] 6(x-y)dy=3x^2 ,0<x<1
 f2(y)=∫[y,1] 6(x-y)dx=3(1-y)^2 ,0<y<1
(2)E(x),Sxx
 xm=E[x]=∫[0,1] xf・1(x)dx=∫[0,1] 3x^3=3/4
 E[x^2]=∫[0,1] x^2・f1(x)dx=∫[0,1] 3x^4=3/5
 Sxx=E((x-xm)^2]=E[x^2]-xm^2=3/5-(3/4)^2=3/80
(3)E(y),Syy
 ym=E[y]=∫[0,1] y・f2(y)dy=∫[0,1] 3y(1-y)^2=1/4
 E[y^2]=∫[0,1] y^2・f2(y)dy=∫[0,1] 3y^2(1-y)^2=1/10
 Syy=E((y-ym)^2]=E[y^2]-ym^2=1/10-(1/4)^2=3/80
(4)Cov(x,y)=Sxy
...続きを読む

Q確率変数とは

確率変数P{X=x}のXとxの違いがよく分かりません。というか確率変数の概念自体がよく分かりません。またなぜP{X=x}=P(x)なのかもわかりません。助けてください。

Aベストアンサー

まず、Xとxが紛らわしいですね。
P{X=x}=P(x)
を、
P{A=t}=f(t)
のように置き換えても、同じ意味ですので、こう置き換えて説明してみます。
確率変数というのは、最初に決めた、現象の集合と、実数との対応です。サイコロの例がよく出されますが、逆にわかりにくくしている面もあります。各面に、{a,b,c,d,e,f}という文字が書かれたサイコロを想像してみてください。さて、このサイコロで、{a,b,c}の文字が出る確率を知りたいとしますね。ところが、数学は「数」を扱う世界なので、文字は直接は扱えません。そこで、現象と数の対応を確率変数とします。この場合、確率変数Aを、
サイコロを振ってaが出たら、A=1
サイコロを振ってbが出たら、A=2
サイコロを振ってcが出たら、A=3
サイコロを振ってdが出たら、A=4
サイコロを振ってeが出たら、A=5
サイコロを振ってfが出たら、A=6
となる変数であると決めてしまいます。これで、現象->数への変換が出来ました。確率変数は、このように、本来数学では扱えない「現象の集合」を、数の集合に変換するのに使うのです。
P{A=t}のtは、正確に書くと、t∈実数です。つまり、実数を適当に一つ持ってきたのが、tです。
P{A=t}=f(t)は、現象の集合を確率変数Aで数に置き換えてやった時の値がtである確率が、f(t)という値と同じだよ。という意味です。

まず、Xとxが紛らわしいですね。
P{X=x}=P(x)
を、
P{A=t}=f(t)
のように置き換えても、同じ意味ですので、こう置き換えて説明してみます。
確率変数というのは、最初に決めた、現象の集合と、実数との対応です。サイコロの例がよく出されますが、逆にわかりにくくしている面もあります。各面に、{a,b,c,d,e,f}という文字が書かれたサイコロを想像してみてください。さて、このサイコロで、{a,b,c}の文字が出る確率を知りたいとしますね。ところが、数学は「数」を扱う世界なので、文字は直接は扱えません。...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

QX,Yは正規分布(0,1)に従う互いに独立な確率変数とする、このとき、

X,Yは正規分布(0,1)に従う互いに独立な確率変数とする、このとき、X+Y、X/Yの分布は?
  頭悪いです、すみません~

Aベストアンサー

正規分布の再生性は応用上たいへん重要なので,覚えてくださいね。
コーシー分布の密度関数の導出も確認してください。
密度変換の公式などは,大丈夫ですね。

Q確率密度関数の求め方について

ある一つの変数に対するデータを数多く収集したとします.一人ひとりに一つづつ値がある身長などです.それを使って身長に関する確率密度を求めたいと思った場合,どのような操作手順になるでしょうか.例えば,最低身長を1mとして5cm刻みのレンジでその中に入る度数を調べて全数で除して,棒グラフみたいなものができたとします.そのグラフの縦軸は確率という次元(無次元)になります.横軸は身長ですね.そのようにしててきたグラフは実は確率密度ではないと思います.なぜなら,確率密度関数を横軸(身長)で積分したら確率になるのだから確率密度関数は身長の逆数の次元を持つ必要があります.そうしますと,例えば先に求めた5cmのレンジに対応して求まった確率をその刻み幅5cmで除す必要があるでしょうか.
このようなことが明記されているテキストがありましたら教えて頂きたいのですが.私の見る限りでは確率密度関数を実際のデータから求めるという演習が載っているものがなく,すべて確率密度関数が与えられているという前提での演習ばかりです.

よろしくお願いします.

Aベストアンサー

>確率密度関数の定義を明確にすること
は,そのとおりです。
定義とともに,どのような仮定(前提)で話を進めるかが重要です。

確率や統計は,身近にあることが対象となりうるために,かえって定義が曖昧になっているような気がします。

かなり確率を学んでいる(私よりかも・・)ようなので,蛇足かもしれませんが,ビュッホン(Buffon) やベルトラン(Bertrand)の問題では,定義が不明確のため解答に混乱を招いてます。
(参考)
http://www.core.kochi-tech.ac.jp/m_inoue/work/math_tale/01.pdf

>すなわち連続型の確率論が先に来るというのが正しいのでしょうか

先に来る,という意味が,はっきりしませんが,連続型で全て表せると考えてもいいでしょう。

確率論でデイラックδ関数を取り上げ,離散も連続も積分を使って一般的議論という解説もあります。古典力学と量子力学の橋渡し,ですね。

>レンジの確率密度関数でなく,その単位レンジの密度関数です。というのは確率密度関数の定義が既に先にある,ことを意味していると思います.

ここも微妙ですが,「 確率 」密度関数とまでは言っていません。その点,注意深く言ったつもりです。自分でも間違いやすいので・・・

棒グラフで止めれば,「離散密度関数」でしょうし,さらに,後半で話したように,曲線近似までもっていけば,「確率密度関数」です。

>確率・統計という学問は解析とか代数という数学分野とちょっと異なっているように思います。

全くそうですね。冒頭述べた,身近にある,ありすぎる点から,問題をややこしくしています。

>確率・統計については逆に実際に計算する手法が先にあってそれが定義であるかのように理解してしまう側面があるのではないでしょうか.

これも全く同意です。
例えば,
誰もが誤差分布の正規性を信じている。実験家は、数学的定理であると思っ ているからであり、数学家は、実験的事実と思っているからである。 (クラメール)
なんて言葉もあるくらいです。

また,統計の計算手法をめぐっては,ここの回答No1にも出てきたsanoriさんと真っ向から対立したくらいですから,
http://oshiete.goo.ne.jp/qa/6733154.html
計算,それが定義,という面はあると思います。


>数学的な厳密性に対して反乱することがほぼできません.
私も応用分野の人間ですから,そんなものですよ。

>私が挙げた箇条書きの計算手順で循環論になる部分があるとしたらどの部分でしょうか

2.各レンジの度数をレンジ幅で除したリスト(棒グラフ)を作成する.
3.そのリストを積分して値Sを求める.理屈から考えると総サンプル数になるが.

の部分です。各レンジは,総サンプル数が得られたからこそ決められます。例えば,あとからサンプルを加えて行けば,レンジが変わることもあるでしょう。

その決められたはずの総サンプル数に計算を施して,総サンプル数を求める,総サンプル数が求まったら,レンジを決める,決めたら総サンプル数を求める計算をする・・・

こういうことですか?
それなら,不要な計算です。

>確率密度関数の定義を明確にすること
は,そのとおりです。
定義とともに,どのような仮定(前提)で話を進めるかが重要です。

確率や統計は,身近にあることが対象となりうるために,かえって定義が曖昧になっているような気がします。

かなり確率を学んでいる(私よりかも・・)ようなので,蛇足かもしれませんが,ビュッホン(Buffon) やベルトラン(Bertrand)の問題では,定義が不明確のため解答に混乱を招いてます。
(参考)
http://www.core.kochi-tech.ac.jp/m_inoue/work/math_tale/01.pdf
...続きを読む

Q【指数分布】確率変数の和

X1,X2,...,Xnは互いに独立な確率変数であり、
それぞれ指数分布 f(x)=1/λ*exp(-x/λ) (x>0)
に従います。
確率変数 Yk=X1+X2+...+Xk の確率密度関数をfk(x)
とするとき、
(1)fk(x)=∫[0,∞]fk-1(x-t)f(t)dt (x>0) を示せ。
(2)fn(x)を求めよ。
(3)確率変数 Yk=X1+X2+...+Xk の期待値、分散を求めよ。
との問題なのですが、

(1)について、
XとYが独立であるとき、Z=X+Yの確率密度関数fZ(z)は
畳み込み積分で与えられるので、
fZ(z)=∫[-∞→∞]fX(x)fY(z-x)dx を...と考えたのですが
上手く証明ができません。

また、(2)について、
指数分布が事象が起きる時間間隔が従う分布だということから
要は、n回の事象が起きるまでの時間と考え、
fn(x)=n/λ
だとは思うのですが、よくこれは特性関数から計算すれば良いのでしょうか...

どなたか数学に詳しい方が居られましたら、
ご教授のほどよろしくお願いいたします。

Aベストアンサー

「畳み込み積分がいまいち理解できていない」の「いまいち」がどこからを指すのかわかりませんが, とりあえず「畳み込み積分で確率変数の和の確率密度関数が表せる」ことがわかっていれば (1) は難しくないはず... というか, ほぼ「畳み込みで書ける, 終わり」のレベル. ヒントは
X1+X2+...+Xk = (X1+X2+...+X(k-1)) + Xk.

で (2) はすっとばして (3) については, 確率変数 X の期待値を E[X], 分散を V[X] で表すことにすると, 2つの確率変数 X, Y に対して
・E[X+Y] = E[X] + E[Y]
・X と Y が独立なら V[X+Y] = V[X] + V[Y]
であることを知っていれば簡単. (1) や (2) とは無関係に解けてしまう.

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Q密度関数の求め方(確率論)

問題
X,Y:標準正規分布N(0,1)を分布にもつ独立な実確率変数とします
このときZ=X/Yの分布は1/π(1+x^2)を密度関数に持つことを示せ

というものなんですが、
これはいわゆるCauchy分布です
Zの分布関数を地道に計算すればいいんですが、
どうもうまくできません。
計算の経過も丁寧に解説してくれる人がいたらどうかお願いします

ただ、公式を適用するとかいうのはなしでお願いします

Aベストアンサー

 なんだか難しい話をなさってますが、単なる変数変換の問題でしょう?超関数を使わなくても計算できますし、分布関数を微分する必要もないと思います。
 確率変数X,Yの関数であるZ(X,Y)の確率密度を求めるには、
p(X,Y)dXdY = f(Z,U)dZdU
となるように(X,Y)を(Z,U)に写像してやって、
q(Z)=∫f(Z,U)dU (U=-∞~∞)
を計算すれば良い。それだけです。

dXdY = |(∂X/∂Z)(∂Y/∂U)-(∂X/∂U)(∂Y/∂Z)| dZdU
ですから、
U=Y
とおくと(X,Y)と(Z,U)は1対1の写像であり、
dXdY = |Y|dZdU
従って、
f(Z,U)=|Y|p(X,Y)
であり、
q(Z)=∫|Y|p(X,Y) dY (Y=-∞~∞)
の計算です。
P(X,Y)=φ(X)φ(Y), φ(x)=(1/√(2π)) exp(-x^2/2)
だから、
P(X,Y)=exp(-(X^2+Y^2)/2)/(2π)
よって、
q(Z)=(1/(2π))∫|Y| exp(-(1+Z^2)(Y^2)/2) dY (Y=-∞~∞)
=2(1/(2π))∫Y exp(-(1+Z^2)(Y^2)/2) dY (Y=0~∞)
= 1/(π(Z^2+1))

 なんだか難しい話をなさってますが、単なる変数変換の問題でしょう?超関数を使わなくても計算できますし、分布関数を微分する必要もないと思います。
 確率変数X,Yの関数であるZ(X,Y)の確率密度を求めるには、
p(X,Y)dXdY = f(Z,U)dZdU
となるように(X,Y)を(Z,U)に写像してやって、
q(Z)=∫f(Z,U)dU (U=-∞~∞)
を計算すれば良い。それだけです。

dXdY = |(∂X/∂Z)(∂Y/∂U)-(∂X/∂U)(∂Y/∂Z)| dZdU
ですから、
U=Y
とおくと(X,Y)と(Z,U)は1対1の写像であり、
dXdY = |Y|dZdU
従って、
f(Z,U)=|Y|p(...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報