全く素人なので簡単にお答え頂ければ幸いです.
通常金属の場合熱伝導率は電気伝導率に比例して大きくなると教科書に書いてありました.
 超伝導体の場合熱伝導率は大変大きなものになるのでしょうか。またその関係は金属系の超伝導体と化合物超伝導体については異なるのでしょうか。電気伝導率は超伝導の場合無限に大きいと思っていましたがこれも間違いでしょうか。以上教えていただきますようお願いします。

A 回答 (4件)

電気伝導と熱伝導の関係ですが


金属の場合、電子が熱を運ぶ割合が大きく、
熱を伝えるのに関わる電子の数や
移動のしやすさやが熱伝導率にそのまま利いてきます。
このとき熱というのは出鱈目なエネルギーを電子に与え
電子はそれに応じて、ばらばらに動くわけですが
全体として(あっち行ったり、こっち行ったりを
すべて合せると)ある方向(温度の低いほう)へ
エネルギー(熱)が伝えれれることになります。

一方、超伝導状態は、
電子が通常の伝導状態と異なり、
電子が一定の秩序をもって運動している状態です。
つまり、上に書いたようなばらばらなエネルギーを
個別に与えれられても電子1個としては対応できないわけで、
秩序を乱して、エネルギーを運ぶか、
出鱈目なエネルギーを運ぶのを止めるしかありません
(秩序を乱すには、他の電子にも負担がかかり、
 それなりに強いエネルギーでなくてはならないためです。
 熱自体は弱いエネルギーから
 強いエネルギーのつぶ(?)を含んでいるので
 全部が遮断されるわけではありません)。
したがって、超伝導状態では電子が熱をあまり伝えなくなります。
たとえば、極低温では熱スイッチとして使われています。
http://www.s.kanazawa-u.ac.jp/phys/physics_MC/ul …

ということになると思います。
    • good
    • 0
この回答へのお礼

大変分かりやすく適確なご回答ありがとうございました.
超伝導の理屈というのは素人には大変分かりにくいのですが通常金属の完全導体と全く違うということは良く理解できました。

お礼日時:2001/06/25 23:07

siegmund です.


motsuan さん,適切な補足ありがとうございます.

motsuan さんが書かれているように,
私の内容と motsuan さんの内容は全く同じことを言っています.
それにしても,
タッチの差(2分差!ですね)で投稿された二つの回答
(もちろん,全く独立に書かれています)が,
偶然ながら双方とも熱スイッチについて触れているところは面白いですね.
超伝導体の熱伝導がよくないことを積極的に利用した注目すべき技法
と言えばそれまでですが.
    • good
    • 0

補足です。


sigmundさんの
>超伝導電子は熱を運びません
私の
>超伝導状態では電子が熱をあまり伝えなくなります
は違うことをいっているようですが、
超伝導電子は熱を運べないけど、
超伝導状態から崩れた電子は熱を運べるということです。

ややこしくしてしまいましたが、
sigmundさんが回答されているのを
しらなかったもので...
    • good
    • 0

> 通常金属の場合熱伝導率は電気伝導率に比例して大きくなる



ヴィーデマン・フランツの法則と言われています.
熱伝導率をK,電気伝導率をσとして,K/σ が絶対温度Tに比例し,
しかも比例係数は金属の種類によらない,というものです.
実際,実験でもほぼそうなっています.
これは,通常金属の電気伝導と熱伝導が
共に電子の流れによって担われていることの結果です.

超伝導体の場合は全く様子がちがいまして,
超伝導体は熱の不良導体です.
すこし荒っぽい言い方ですが,超伝導体の電気伝導は超伝導電子が担っていますが,
超伝導電子は熱を運びません.
熱を運ばないということが,実は電気抵抗ゼロと深く関わっています.

低温の実験では超伝導体を利用した熱スイッチというのがあります.
熱関係の実験では熱を与えり,断熱したりしたい,なんていうことがしばしばです.
熱源と試料との間を超伝導体で結んでおきます.
普通は超伝導になっていて熱はほとんど通さない.
熱を通したいときには磁場をかけて超伝導を壊す.
そうすると,通常金属になるから熱をよく通す,というわけです.
磁場をつくるコイルに(適当な)電流を流すかどうかで,
熱伝導をコントロールできます.

> 電気伝導率は超伝導の場合無限に大きいと思っていましたが...

有限の電流が流れても電圧降下がないのですから,
形式的には電気伝導率が無限大と思っても結構です.
ただし,超伝導体を単に電気伝導率無限大の完全導体と見るのは余りよい見方でなく,
内部に磁束が入らない完全反磁性という方がより基本的です.
    • good
    • 0
この回答へのお礼

ご専門の立場からご回答いただきありがとうございました.今回始めてこのサイトに質問の投稿をさせていただきました.質問者の知識レベルや背景も明らかにしておく必要性を感じました。少し私のレベルもあがりました.

お礼日時:2001/06/25 23:17

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q金属、半導体の抵抗の温度変化について

金属は温度が高くなると抵抗が大きくなり、半導体は温度が高くなると抵抗が小さくなるということで、理論的にどうしてそうなるのでしょうか。
金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?
半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。
あと自分で調べていたところ「バンド理論」というのを目にしました。
関係があるようでしたらこれも教えて頂くとありがたいです。

Aベストアンサー

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体の中において金属の自由電子に相当するものは、電子とホールです。この2つは電流を担う粒子ですので、「キャリア」(運ぶ人)と言います。
ホールは、半導体物理学においてプラスの電子のように扱われますが、その実体は、電子が欠けた場所のことを表す「穴」のことであって、おとぎ話の登場人物です。
電子の濃度とホールの濃度に違いがあったとしても、一定の温度においては、両者の濃度の積は一定です。
これは、水溶液において、H+ と OH- の濃度の積が一定(10^(-14)mol^2/L^2)であるのと実は同じことなのです。

中性の水溶液の温度が高くなると、H2O が H+ と OH- とに解離しやすくなり、H2O に戻る反応が劣勢になります。
それと同様に、真性半導体においても、温度が上がると電子とホールが発生しやすくなるのに比べて、両者が出合って対消滅する反応が劣勢になるため、両者の濃度の積は増えます。
キャリアが増えるので、電流は流れやすくなります。

こんにちは。

>>>金属については、温度が上がると粒子が熱振動し自由電子が流れにくくなるというようなことを聞いたことがありますがあっていますか?

だいたい合っています。
金属については、温度が上がると正イオン(自由電子が引っこ抜かれた残りの原子)の振動が激しくなるので、自由電子が正イオンに散乱されます(進路を乱されます)。
それをマクロで見たとき、電気抵抗の上昇という形で現れます。

>>>半導体についてはまったく理由がわからないので詳しく教えて頂くとありがたいです。

半導体...続きを読む

Q熱伝導率と電気伝導率の関連性について

タイトルにも挙げたように金属や半導体における熱伝導率と電気伝導率はどのような関係を持っているのかがいまいち理解できません。分かる方がいらしたらぜひ教えてください、お願いします。

Aベストアンサー

 物質の熱とは格子振動、つまり原子核の振動なんですが、
それを伝えているのは通常電子なんです。
 熱せられ原子が振動しても、原子核同士が衝突する
わけでなないので、その振動(つまり熱)を伝える
担い手になっているのは、原子核の周りの電子及び電磁波なんです。

 ここでいきなり電磁波が出てきて少しフシギかもしれませんが、
電子も原子核を直接ぶつかっているわけではないので、
電子と原子核のエネルギーの交換の担い手としては電磁波が出てくる
のです。


 鉄を熱すると赤くなりますよね。つまり赤い光が
出てるわけじゃないですか。光ってつまりは電磁波
でしょ。周囲の電子、原子核に伝えても余るエネルギー
は電磁波のまま、物質の外に出てきてしまうわけです。

 熱した鉄に直に手を触れなくても、手を近づけた
だけで暖かく感じるのは、鉄の出す赤外線で熱せられた
空気の振動と、鉄の出す赤外線を直に人の手が
感じるからなんですが、いずれにせよ熱の伝達には電磁波が
つき物なんですが、電磁波は電子の運動で発生するもの。
だから、電子が自由に動ければ電磁波が発生しやすく
その電磁波が回りの電子に影響を与え、その電子が
動きやすければさらに電磁波の発生、そして周囲の格子振動
へと変わっていくわけです。(少しおおざっぱですが)
  動きやすい電子? つまり伝導帯にある自由電子が
多ければそれだけ熱は伝わりやすいのです。

 そのため一般には自由電子密度が大きい物質、つまり
金属は熱の良導体になります。自由電子が電流の
担い手であることはご存知ですね。

 ということで通常は熱の良導体は同時に電気の良導体に
なります。
 
 勿論例外も多々あります。その場合は自由電子が電気を運んで
いないわけです。ですから物質の電気的性質をより深く研究
するときは、その物質の比熱の変化とかいった熱力学的性質を
十分調べるのです。

 物質の熱とは格子振動、つまり原子核の振動なんですが、
それを伝えているのは通常電子なんです。
 熱せられ原子が振動しても、原子核同士が衝突する
わけでなないので、その振動(つまり熱)を伝える
担い手になっているのは、原子核の周りの電子及び電磁波なんです。

 ここでいきなり電磁波が出てきて少しフシギかもしれませんが、
電子も原子核を直接ぶつかっているわけではないので、
電子と原子核のエネルギーの交換の担い手としては電磁波が出てくる
のです。


 鉄を熱すると赤くなりま...続きを読む

Q真空中の熱伝導について

 素人ですが、
 真空中において、熱伝導はするのでしょうか。
例えば、ある固体を真空の容器で覆った場合、容器に
固体の熱は伝導するのでしょうか。
 又、スペースシャトルで火災が発生した場合、室外は燃えないのではないですか。
 余りうまく表現出来ていませんが、真空中の熱伝導等について、素人でも理解できる簡単な書物等があれば教えて下さい。
 
 
 

Aベストアンサー

素人考えです。
熱の伝導は主に3っつに分かれます。伝熱、対流、放射です。真空中の場合伝熱するものが無いので放射による伝道が起こります。太陽からの放射熱がそれに当たります。
発火は、空気が無い状態でも起こります。練炭等の一酸化炭素中毒が燃えて酸素を使い切っても燃えている証拠です。宇宙に居るスペースシャトルも同じ理屈で燃えると思います。

Q液体ヘリウムよりも低い温度にするためにはどうしますか?

液体ヘリウムよりも低い温度にするためにはどうしますか?

液体ヘリウムで下げられる温度はヘリウムの沸点である4 Kまですよね?

超伝導などでは、これより低い温度において実験が行われていますが、
これはどうやって温度を下げているのでしょうか?

Aベストアンサー

 高山等の気圧の低い所では、水が100℃以下で沸騰するのと同様に、液体ヘリウムを入れた密閉容器に真空ポンプを繋いで、容器内部を減圧すると、液体ヘリウムが4.2K以下で沸騰して、更に温度が下がります。
 しかし、温度が2.17K以下になると、液体ヘリウムは超流動という、粘度が極端に低い状態になります。
 超流動状態の液体ヘリウムは、熱伝導率が極端に高くなったり、重力に逆らって薄い膜となって高速で容器や配管の内側全体に広がったりします。
 超流動状態になった液体ヘリウムは、真空ポンプに繋がっている配管を通って、急速に容器の外に逃げてしまいます。
 又、超流動ヘリウムの膜が温度の高い所まで広がると、その熱はあっという間に低温容器の中に伝わってしまいます。
 このため、液体ヘリウムを減圧する方法では、温度を1K以下にする事にはあまり向いていません。

【参考URL】
 超流動 - Wikipedia
  http://ja.wikipedia.org/wiki/%E8%B6%85%E6%B5%81%E5%8B%95

 尚、普通のヘリウムは原子核の中に陽子が2個、中性子が2個あるヘリウム4と呼ばれるものですが、ヘリウムの中には原子核の中に陽子が2個、中性子が1個あるヘリウム3と呼ばれるものもあります。
 ヘリウム3は超流動状態になる温度が、34気圧で2.6mK(ミリケルビン)、0気圧でおよそ1mKとヘリウム4と比べて非常に低いため、液体ヘリウム3を減圧する事で、0.3K程度の極低温を得る事が出来ます。
 又、超流動ヘリウム4と超流動状態ではない液体ヘリウム3は、水と油の様に、混ざり合わずに分離する性質があります。 超流動ヘリウム4の上を液体ヘリウム3が覆っている(塞いでいる)状態であれば、超流動ヘリウムの逃げ場はありませんから、超流動ヘリウム4を蒸発させて熱を奪わせる事で、貴重なヘリウム3の使用量を節約して低温を得る事が出来ます。

 この事を利用した希釈冷凍法という、0.005K程度まで冷却可能な方法が存在します。

【参考URL】
 超低温物理学への招待|希釈冷凍器
  http://www.sci.osaka-cu.ac.jp/phys/ult/invitation/cryo/dr.html

 更に温度を下げる場合には、常磁性物質に磁場をかけた状態で、他の方法で冷却して極低温した後で、磁場を無くす事で、磁場によって生じていたエントロピーの低さを、熱運動のエントロピーの低さに転換して、千分の1Kクラスの極低温を得る、断熱消磁法が使用されます。

【参考URL】
 断熱消磁 - Wikipedia
  http://ja.wikipedia.org/wiki/%E6%96%AD%E7%86%B1%E6%B6%88%E7%A3%81

 常磁性物質を用いた断熱消磁法は、電子のスピンによる磁気モーメントを利用した方法ですが、現在は銅などを用いて、原子核のスピンによる磁気モーメントを利用して、百万分の1Kクラスの極低温を得る、核断熱消磁法が使用されます。

【参考URL】
 超低温の世界 - 金沢大学 理学部
  http://www.s.kanazawa-u.ac.jp/phys/physics_MC/ult_html/world.html

 超低温物理学への招待|核断熱消磁冷凍法
  http://www.sci.osaka-cu.ac.jp/phys/ult/invitation/cryo/demag.html

 又、特殊な冷却方法として、少数の気体状の原子しか冷却する事が出来ませんが、レーザー冷却法があります。
 高真空状態に保った容器の中に、冷却対象の物質を極少量だけ気体にして入れ、冷却対象の原子が吸収し易い波長よりも僅かに長い波長のレーザーを、前後左右上下から当てると、ドップラー効果により、レーザーの光源に近づいて行く原子のみがレーザーを吸収する確率が高まり、レーザーを吸収した原子は、光の圧力で原子の移動している方向とは逆向きの力を受けて、運動速度が遅くなります。
 熱エネルギーとは原子や分子の運動エネルギーの事ですから、原子の運動が遅くなるという事は、熱が失われて温度が下がるという事です。
 レーザー冷却法で得られる低温は、百万分の1Kでです。

【参考URL】
 レーザー冷却 - Wikipedia
  http://ja.wikipedia.org/wiki/%E3%83%AC%E3%83%BC%E3%82%B6%E3%83%BC%E5%86%B7%E5%8D%B4

 高山等の気圧の低い所では、水が100℃以下で沸騰するのと同様に、液体ヘリウムを入れた密閉容器に真空ポンプを繋いで、容器内部を減圧すると、液体ヘリウムが4.2K以下で沸騰して、更に温度が下がります。
 しかし、温度が2.17K以下になると、液体ヘリウムは超流動という、粘度が極端に低い状態になります。
 超流動状態の液体ヘリウムは、熱伝導率が極端に高くなったり、重力に逆らって薄い膜となって高速で容器や配管の内側全体に広がったりします。
 超流動状態になった液体ヘリウムは、真空ポンプに繋...続きを読む

Q何kV/cmで絶縁破壊が起こるか?

試料に高電圧を印加する実験を考えております。シリコンオイル中、および大気中において、何kV/cmで絶縁破壊が起こるか、ご存知の方がいらっしゃいましたら教えていただきたく存じます。有効数字は一桁程度でかまいません。

Aベストアンサー

一般的にいわれるのは
大気中:30kV/cm

また、教科書によると、
シリコン油中:80kV/2.5mm
だそうです。
ただ、絶縁破壊電界は電極間距離に依存し、一般には短い方が高電界に耐えます。

Q貴金属はどうして超伝導にならないか

貴金属(金銀銅)はどうして超伝導にならないのか、
すみませんが、お願いいたします。

最近、金がなったとかいう話も聞いたような、、、
違ったかな。

犬の骨が理由なんてことはありませんよねえ。

Aベストアンサー

少し古いですが関連する記事を見つけましたので参考にしてください。
パリティの1993年No.8の、p20~p21です。
書いてあることをまとめると以下のようになります。

・貴金属(金銀銅)が0.1mK以上で超伝導にならないのは、フェルミエネルギーにおける電子状態密度が小さく、電子-フォノン相互作用が弱いからである。
・Rh(Tc=325μK)のTcが低いのは、おそらく交換相互作用によって、常磁性体におけるスピンのゆらぎが増強されるためだろう。
・Pd、Ptが約0.1mKまで超伝導転移は見出されていない。これはスピンのゆらぎがはるかに強いからである。
・おそらく純粋な金では超伝導が存在するに違いない。

Q半導体の縮退って?

半導体の参考書など読んでいるとよく、「縮退」という言葉が出てきます。しかも、どうやらいろいろなケースで使われているようですが、いまいちよくわかりません。

例えば、
・フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
・スピンが上下二種類埋まっているとき。

に関しては分かったのですが、縮退の一般的意味と共に、他のケースについて、どういったときに縮退というのか具体的に教えていただけませんか?
よろしくお願いします。

Aベストアンサー

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子統計で扱わないといけない(低温)ときを「縮退している」といいます.
低温かどうかは考えている系のもつ特徴的なエネルギー(例えば,フェルミエネルギー)
を温度に換算したもの(フェルミ温度 T_F)との関連で決まります.
T << T_F なら縮退しています.
縮退ならフェルミ分布関数の分母にある1を無視できないし,
非縮退なら無視してよい(ボルツマン分布になる)というわけです.
sunny_day さんの
> フェルミ準位が伝導帯中や価電子帯中に位置してるとき。
は確かにそのとおりですが,これは縮退のもともとの定義ではありません.
フェルミ準位の位置の結果,そうなっているということです.
なお,フェルミ準位が禁制帯内にあっても,バンド端とのエネルギー差によっては
縮退していることもありえます.

(3) 分子遺伝学でも縮退という用語があります.
1種類のアミノ酸に対応し複数の遺伝子コドンが存在するときにこのように言うようです.
ここら辺は素人なのであまり自信がありません.

物理で縮退という用語は主に2つの意味で使われます.

(1) mmky さんご指摘の,
> 同じエネルギーをもつ状態が二つ以上いくつか存在すること.
例えば,クーロンポテンシャル中の荷電粒子のような中心力場では球対称性がありますから,
粒子のエネルギーは角運動量にはよりません.
p 軌道なら3重縮退,d 軌道なら5重縮退.
電子だったら,これにスピンの固有値による2重縮退が加わります.

(2) 電子気体(など)を量子統計で扱わないといけないか,
古典統計でよいかということがあります.
量子...続きを読む

Qデバイ温度と物質の硬さの関係

デバイ温度が高い物質は、硬い。低い物質はやわらかい。
と、講義で教わりましたが、どう証明されるか知りたいです。よろしくお願いします。

Aベストアンサー

詳しいことはキッテルの「固体物理学入門」を読んでいただくとして以下要点だけ。
デバイの比熱理論は格子振動の振動数が全部同じ(Einstein Model)ではなく振動数に分布があるとして理論が作られています。そしてその振動数分布の中で特定振動数(デバイ振動数:νd)以下のものだけが比熱に寄与すると仮定しています。デバイ温度をθd[K]とすると
 θd=(h/k)νd・・・温度の次元・チェックしてください
ここでデバイ温度と物質の硬い・柔らかいを思いっきり直感的に解釈すると
硬い:なかなか格子振動が起こりにくい、つまりνdが大きい
柔らかい:その逆
ということで解釈できると思います。ちなみにダイヤモンドのθdは1860K、一方比較的低温で溶解する鉛のθdは96Kです(柔らかくなるというのは温度上昇とともに格子振動が励起されやすいということで、柔らかい物質は比較的低い温度で格子振動が励起されやすいということすね)。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング