私は60歳を越す老人です。
退職し、学生時代好きだった数学の本を読み出しました。
この本は難しですが、ゼータ関数と素数に興味があり一歩一歩理解していこうと思っています。
よろしく願います。
添付画像は「素数とゼータ関数」のP8にあります。
私が理解できないのは、添付画像の式で1段目から2段目への展開です。
1段目から2段目への展開が理解できません。
log(1-p^-s)から何故logが消えてしまうのかが、理解できまでん。
2段目から3段目への展開は理解できるのです。
(1-p^-s)^-1の等比級数の級数展開が関係しているとは思っているのですが、私の計算ではlogが消えません。
1度思い詰めると、そうだと思い込んで、発想の展開ができない性格です。
宜しくご回答願います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 複素関数と実関数のテーラー展開の違いについて 1 2022/08/09 06:18
- 数学 多変数関数の微分とテイラー展開について 5 2022/04/24 16:55
- 数学 コーシーリーマンの関係式の誘導 2 2022/06/13 10:35
- 数学 高一数学 数と式 画像あり (2)までは出来たのですが、 (3)の下線部の文字式の展開が理解できませ 2 2023/08/19 15:48
- 数学 高一数学 二次関数 画像あり 〔 チャート 83ページ 問題練習102番 〕 解説に、②-① と書い 2 2023/08/15 13:29
- 数学 中3多項式置き換えによる展開と、因数分解について ①(x+y-2)^2 ②(x-y+5)(x-y-5 2 2022/04/21 00:00
- 数学 「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー 3 2022/08/27 19:56
- 数学 素朴な疑問について 級数展開で、たとえば三角関数が、 a0+a1x+a2x^2+a3x^3+... 8 2022/03/28 16:27
- 数学 複素積分 留数について質問です。 f(z)=1/((z-1)z(z+2)) に対して、閉曲線|z-1 4 2023/05/26 11:35
- 教育学 高校化学 0 2023/02/15 07:32
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1/(1-x)や1/(1+x)の積分形
-
log3^1はなんで0になるんですか?
-
log2の5は?
-
∫log(x^2)dxの不定積分を教えて...
-
e^x=2のときのxの求め方
-
256は2の何乗かを求める式
-
lnをlogに変換するには・・
-
lim[x→∞]log(1+x)/x これってど...
-
∫1/x√(x^2+1) の積分について。
-
y=x^x^xを微分すると何になりま...
-
関数電卓の使い方
-
超初歩的質問ですが・・
-
透過率から吸光度を計算する際...
-
広義積分の計算なのですが、∫[0...
-
eの指数の計算がわかりません。
-
2を何乗すると6になりますか? ...
-
なぜxがe^logxと変形できるので...
-
自然対数をとる?とは・・・
-
y‘=(2x^2-y^2)/xyの解き方につ...
-
∫{x/(x+1)}dxの解き方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1/(1-x)や1/(1+x)の積分形
-
y=x^x^xを微分すると何になりま...
-
∫{x/(x+1)}dxの解き方
-
e^x=2のときのxの求め方
-
関数電卓の使い方
-
自然対数をとる?とは・・・
-
lim[x→∞]log(1+x)/x これってど...
-
透過率から吸光度を計算する際...
-
log2の5は?
-
lnをlogに変換するには・・
-
256は2の何乗かを求める式
-
log3^1はなんで0になるんですか?
-
2を何乗すると6になりますか? ...
-
両対数グラフでの直線の傾きと...
-
∫log(x^2)dxの不定積分を教えて...
-
なぜxがe^logxと変形できるので...
-
超初歩的質問ですが・・
-
∫1/x√(x^2+1) の積分について。
-
eの指数の計算がわかりません。
-
y=x^(1/x) の 微分
おすすめ情報